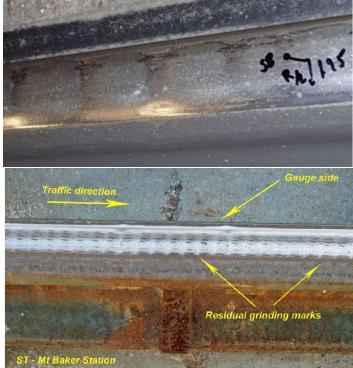
Controlling Grinding-Induced Corrugation (GIC) to Maintain Lower Wayside Train Noise Levels

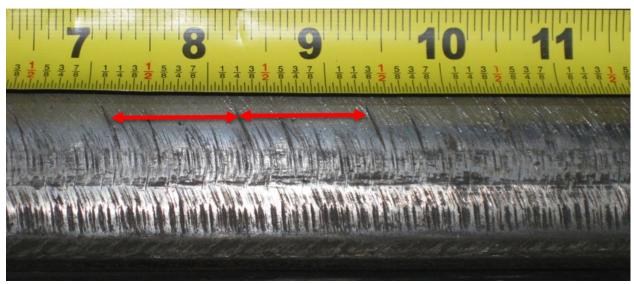
Shankar Rajaram, PhD Engineering Manager – Rail Vehicles Sound Transit

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021


OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Light Rail Vehicle Noise Source

Key Rail Surface Conditions Affecting Noise


- Rail Roughness Non-periodic defect
- Rail Corrugation Periodic defect

3

- Corrugation from wear and tear during service
- Grinding Induced Corrugation (GIC)

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

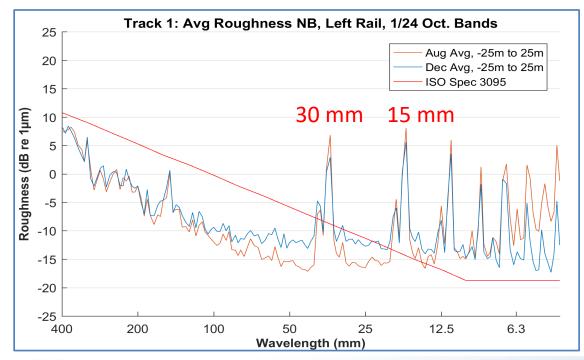
Grinding Induced Corrugation with High ⁴ Roughness

Grinding Marks Pitch: 30 mm

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Rail Roughness Measurements

A Corrugation Analysis Trolley (CAT) measures roughness of one rail at a time


(or)

a Bi-CAT that measures roughness of both rails simultaneously

AR • OCTOBER 18, 2021 **SOUNDTRANSIT WRI** 2021

Typical Rail Grinding Signature

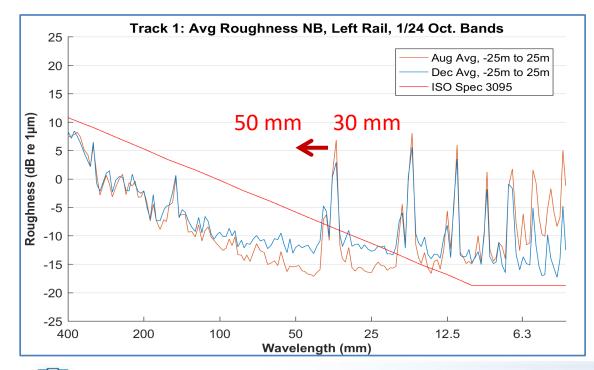
Primary rail roughness peak at 30 mm due to GIC. 30 mm @ 55 mph = 825 Hz noise

6

 Secondary peak 15 mm @ 55 mph = 1650 Hz

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Sound Transit's Grinding Strategy


GIC Wavelength	25 mm	32 mm	40 mm	50 mm) 63 mm	80 mm
Train Speed						
30 mph	536 Hz	426 Hz	335 Hz	268 Hz	213 Hz	168 Hz
35 mph	626 Hz	497 Hz	391 Hz	313 Hz	248 Hz	196 Hz
40 mph	715 Hz	568 Hz	447 Hz	358 Hz	284 Hz	224 Hz
45 mph	805 Hz	639 Hz	503 Hz	402 Hz	319 Hz	251 Hz
50 mph	894 Hz	698 Hz	559 Hz	447 Hz	355 Hz	492 Hz
55 mph	983 Hz	780 Hz	615 Hz	492 Hz	390 Hz	307 Hz

The GIC primary peaks were targeted to range between 250 Hz and 500 Hz for all train speeds

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Shifting the Rail Grinding Signature

- 30 mm @ 55 mph = 825 Hz noise
- 50 mm @ 55mph = 492 Hz

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021

Rail Grinding Steps and Grinder Speeds

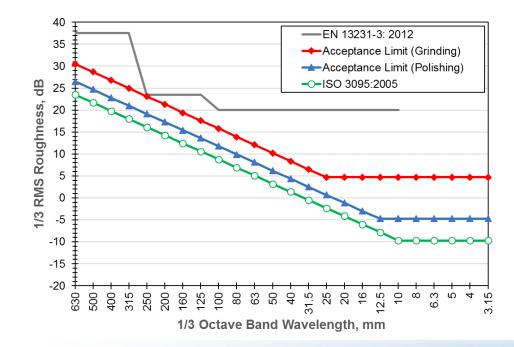
For a 3600 RPM grinder on DF tracks or Ballast & Tie Tracks, 2 steps used:

 Grinding step – use coarse stone and slow speed (4 mph)

Shapes the rail profile.

 Polishing step – use softer stone and faster speed (6mph)

Finishes the surface.


RAIL TRANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Sound Transit's Rail Grinding Finish



Rail Grinding – Sound Transit's **Roughness Criteria**

RANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Measured Post-Grinding Roughness

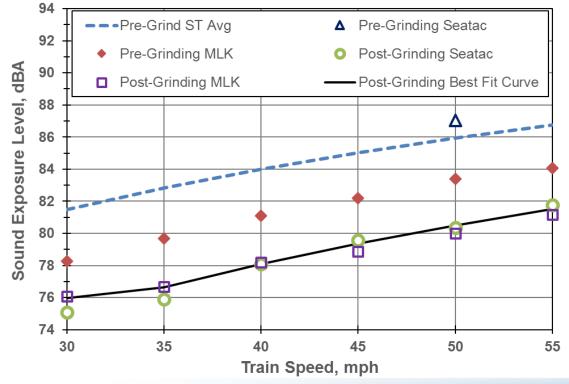
8, 2021 OCTOBER RAII RANSIT SEMINAR

12

Measured Rail Roughness Peaks

Test Site	Rail Rough	ness Peak 1	Rail Roughness Peak 2			
	Wavelength	Roughness Level	Wavelength	Roughness Level		
Pre-Grinding						
Tukwila 2013	40 mm	6 dB1	20 mm	3 dB1		
MLK 2017	47.1 mm	7 dB1	23.5 mm	2 dB ¹		
Seatac 2017	34 mm	7 dB1	17.2 mm	4 dB ¹		
Post-Grinding						
MLK 2019	50 mm	0 dB1	25 mm	0 dB1		
Seatac 2019	50 mm	3 dB ¹	25 mm	-3 dB1		
¹ This rail roughness decibel uses 1 micron as the reference level						

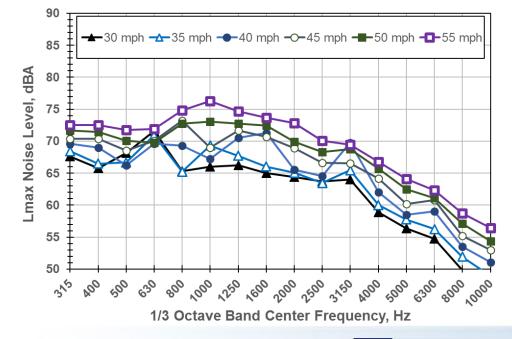
¹ This rail roughness decibel uses 1 micron as the reference level.


Test Train Wayside Noise Measurement

Normalized 1-car LRV Noise at 50 ft

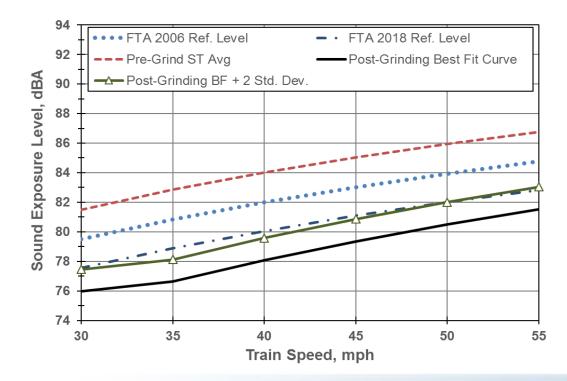
RAIL TRANSIT SEMINAR . OCTOBER 18, 2021

SoundTransit WRI 2021


Noise Peak Frequencies: Modeled versus Measured

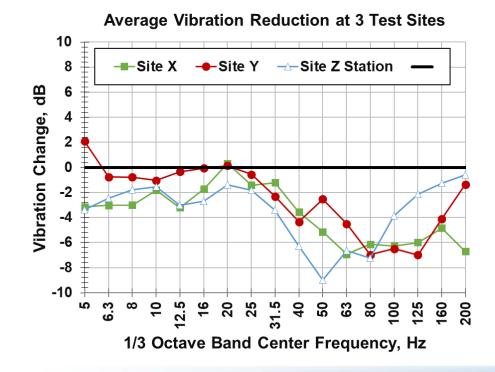
Train Speed		oise Frequency Based Ighness Peaks	Wayside Train Noise 1/3 Octave Band Center Frequency		
	1 st Peak at 50 mm	2 nd Peak at 25 mm	Modeled	Measured	
30 mph	268 Hz	536 Hz	500 Hz	500 Hz/ 630 Hz	
35 mph	313 Hz	626 Hz	630 Hz	630 Hz	
40 mph	358 Hz	715 Hz	800 Hz	800 Hz	
45 mph	402 Hz	805 Hz	800 Hz	800 Hz	
50 mph	447 Hz	894 Hz	1000 Hz	1000 Hz	
55 mph	492 Hz	983 Hz	1000 Hz	1000 Hz	

RANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

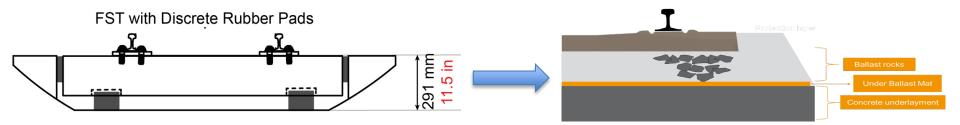

Measured 4-car LRV Noise Level at 50 ft¹⁷ from Seatac Test Site

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021

OCTOBER 18, 2021 **SoundTransit WRI 2021**


Reference 1-car LRV Noise Level at 50 ft

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021


OCTOBER 18, 2021 **SoundTransit WRI 2021**

Vibration Reduction from Rail Grinding

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Benefits of Good Rail Grinding Program

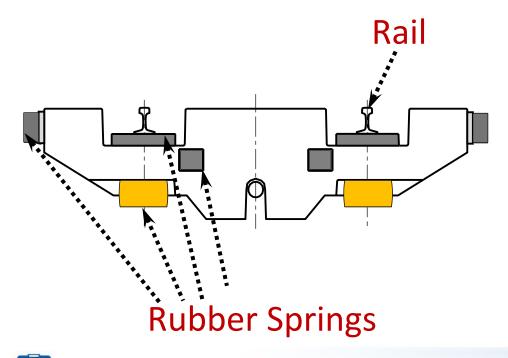
- Lowering train vibration signature through good rail grinding reduces vibration mitigation costs.
- In this example, a floating slab track recommendation was replaced with a ballast mats because of a good rail grinding specification

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

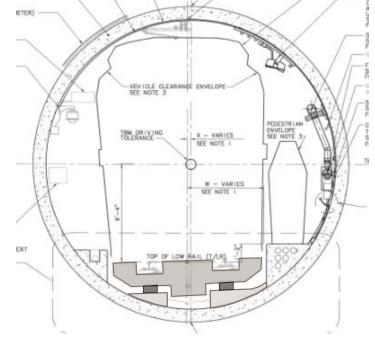
Embedded Track Rail Grinding Speeds

• It may not be practical to grind the embedded rails at speeds greater than 5 mph.

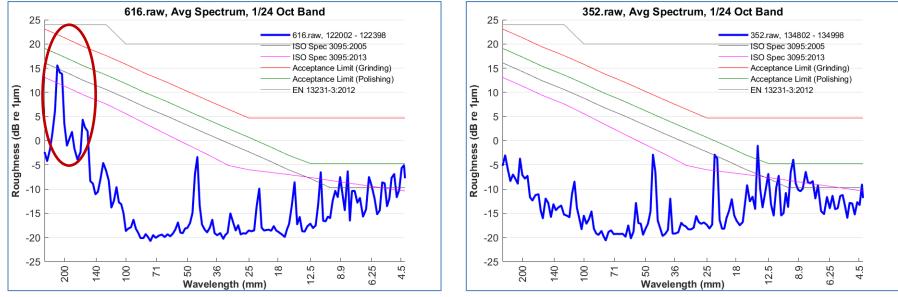
- An approach used for a 3600 RPM grinder:
- Grinding step use coarse stone and slower speed (3 mph)
- Polishing step use softer stone and faster speed (4.5 mph)


Sound Transit's Grinding Strategy for Embedded Rail

22


GIC Wavelength	24 mm	36 mm	40 mm	50 mm
Train Speed				
30 mph	559 Hz	373 Hz	335 Hz	268 Hz
35 mph	652 Hz	435 Hz	391 Hz	313 Hz
40 mph	745 Hz	497 Hz	447 Hz	358 Hz

Rail Grinding for 5 Hz Floating Slab

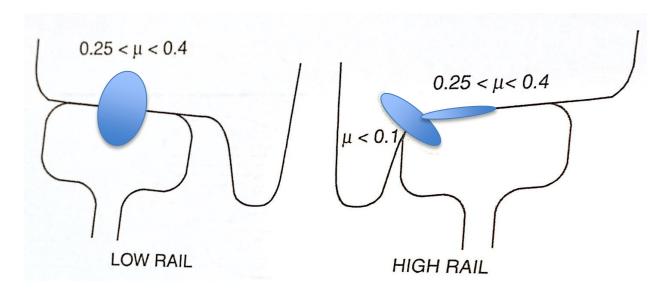


23

Rail Roughness on a 5 Hz floating Slab²⁴ Track System

Floating Slab Track

Standard Direct Fixation Track

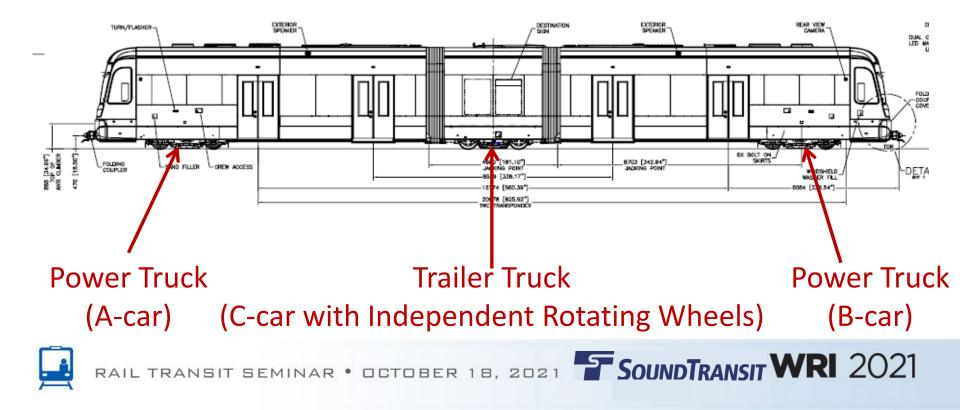


RAIL TRANSIT SEMINAR • OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Systems Approach to Wheel/Rail

Rail and Wheel, Wheel, Rail Material IRU. Thermal Cracks Plastic Flow Wear Damage Modes 28/581 Dynamics Rail Rollover Contact Mechanics Hollow Wheels, ProfitUP Spending D. Source: Kalousek, J., and Magel, E., Railway Track Struc., 93,..1997 ANSIT SEMINAR • OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

Ideal Friction Coefficient in the Wheel-Rail Contact



Source: Iwnicki, S. (Ed.), Handbook of Railway Vehicle Dynamics. 2006

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021 TSOUNDTRANSIT WRI 2021

70% Low Floor Vehicle - Seattle

Conclusion

- The advanced rail grinding program at Sound Transit showed 2 dB to 6 dB reduction in wayside noise.
- Direct correlation between grinding-induced corrugation and wayside noise was seen.
- The optimal grinder speeds for grinding and polishing steps depend on the grinder rpm and train speeds.

Conclusion

- A good rail grinding strategy to minimize the effect of Grinding Induced Corrugation on noise and vibration can result in significant savings in mitigation costs.
- A long-term wheel/rail strategy is critical for successful maintenance of the lower wayside noise and vibration levels.

OCTOBER 18, 2021 **SoundTransit WRI** 2021

Acknowledgements

- Sound Transit Staff and Management
- King County Metro
- National Research Council Canada
- Advanced Rail Management
- ATS Consulting
- Wilson Ihrig
- Michael Minor Associates

