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Background:
• Derailment prevention is always critical for railway safety
• A recent derailment at TTC shows that the current 

Lateral/Vertical load (L/V) ratio-based criteria may not be 
adequate to assess the risk of derailment in all circumstances

• Evaluation of derailment risk is still a challenge
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Flange climb derailment at TTC in summer 2020
• The derailment occurred in a sharp curve
• The test vehicle passed through the curve at 2 mph and 4 

mph without derailing, then derailed when passing through 
the same curve at 6 mph

• The measured friction coefficient is about 0.55
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Methods to ensure safety

• Standards
– AAR criteria: individual wheel L/V(1.0); time(50ms) and distance(3 ft) 

duration; nominal friction coefficient is 0.5

• Data comparison of subsequent runs when measured value is 
close to limit
– Can eliminate the effect of some influence factors, like friction
– More reliable, if key metric (L/V ratio time & distance duration)  

correctly represent risk
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L/V Ratio criterion did not evaluate risk of derailment effectively

• Met standard and no obvious difference between L/V ratio of 
2 mph and 4 mph run
– Insensitive to real derailment risk
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Data comparison does not effectively identify risk of derailment

• For the 4 and 6 mph runs, the L/V ratio time or distance-based 
parameter decreased
– The test run that derailed at 6 mph trended in the opposite direction than 

expected based on data comparison, key metric does not represent risk 
correctly
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Deep Analysis of L/V Ratio-based Criteria
• The classical Nadal criterion is generally considered conservative 

for safety

௠௔௫ ௡

௡ ௠௔௫

௡ is the nominal friction coefficient
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• Restrict the friction coefficient used in the Nadal criterion 
explicitly or implicitly
– Adopt a nominal friction coefficient ௡ to replace 0.6 (possible 

value in some scenarios) in safety standards 

• The placement of the additional restriction of time or distance 
duration because flange climb derailment process is not 
instantaneous
– It is impossible to find a limit to suit all situations

In practice
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• Vertical wheel lift-based geometric criterion
– Distance between tape line and rail top, currently cannot be measured
– Concept used in simulation and analysis of L/V ratio-based criterion

Concept to interpret derailment
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• Measured L/V ratio is function of contact angle and the 
equivalent friction coefficient ( ), can represent the contact 
angle if is known

Facts behind measured L/V ratio

𝐿

𝑉
=

(𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒) × 𝑠𝑖𝑛(𝛿) − (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒) × cos (𝛿)

(𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒) × 𝑐𝑜𝑠(𝛿) + (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒) × sin (𝛿)

=
𝑁 × 𝑠𝑖𝑛(𝛿) − 𝑁 × 𝜇𝑒 × 𝑐𝑜𝑠(𝛿)

𝑁 × 𝑐𝑜𝑠(𝛿) + 𝑁 × 𝜇𝑒 × sin (𝛿)
=

𝑡𝑎𝑛(𝛿) − 𝜇𝑒

1 + 𝜇𝑒 × tan(𝛿)
 

N 𝜇௘ =  W/R creep force on the Y-Z plane = Friction force in real time
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• is affected by lots of factors (e.g., creepage) with the basic 
restriction , is actual sliding friction coefficient
– It is the reason why measured L/V maybe larger than Nadal limit without 

apparent danger 
– ௔ is essential for using the L/V ratio criteria to ensure the safety but 

affected by surface status of wheel and rail, cannot be measured in real time

Facts behind measured L/V ratio      cont.

௘

௘

௔

௔

( 𝜇 ≥ 0 𝑎𝑛𝑑 0 < 𝛿 <
𝜋

2
 )
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• Nominal friction coefficient ( ) is a constant to represent 
in standard, simplify the implementation and balance the 
efficiency & risk 

Facts behind measured L/V ratio      cont..
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• The uncertain relationship between nominal friction coefficient 
( ) and equivalent friction coefficient will cause both the 
conservativeness and risk of using L/V ratio-based criteria
– ௡ ௔ is the reason that current criteria did not 

identify the risk of derailment

Conservativeness and risk of L/V ratio-based criteria

௘

௘

௔

௔

௘

௘

௡

௡

Always correct

Maybe wrong
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• L/V ratio-based criteria evaluate derailment risk through 
assessing contact angle

• But the contact angle is not a monotonically increasing function 
when the flange climbs

L/V ratio-based criteria lacks characteristics 
related to flange climb risk
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• When the max contact angle of the wheel has been reached, the 
L/V ratio will decrease if the wheel either climbs toward the flange 
tip (more dangerous) or slips down to the wheel tread (safer)
– The information is critical for real safety assessment

Significant consideration for L/V ratio-based criteria  
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• L/V Ratio-based criteria are not always positively correlated with 
the risk of derailment
– The traditional concept that the longer the duration of L/V ratio 

exceedance, the higher the probability of having a flange climb 
derailment is not always correct

– “L/V ratio and relevant duration is not a monotonically increasing with 
derailment risk” is the reason that the comparison method did not 
identify the risk of derailment  

Significant consideration for L/V ratio-based criteria cont.
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A new and implementable derailment criterion is needed 
which is independent of friction coefficient and can 

represent real risk effectively
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W/R Contact Position-based Geometric Criterion
• Directly compare the W/R contact position with the wheel profile
• The geometric criterion identifies when the wheel has climbed 

past the position of the maximum contact angle making the 
contact angle less than a specified angle
– Once the wheel has climbed past this point, derailment could be imminent
– The specified angle should be larger than ௡ , and can be defined 

according to the conditions and requirements of the railway system
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• The idea was proposed by TTCI’s VTI expert to develop L/V 
distance-based criterion 20 years ago

• Limited by the technology at the time, the assessment has 
never been fully realized
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IWS for W/R contact position measurement
• The derailed vehicle mentioned above was equipped with 

TTCI’s latest high accuracy IWS that output individual W/R 
force and lateral contact position
– Made it possible to investigate whether the geometric criterion would 

identify the risk of derailment to TTCI’s test team
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• Under development more than 30 years
• Refined the framework in resent years, highly accurate even in 

extreme situations such as wheel-lift, derailment

History and new progress
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• Focused on the output of the W/R lateral contact position 
after it was determined that the L/V ratio-based criteria were 
not as effective at showing the risk of derailment

௘

௘

௡

௡

Maybe wrong

not always positively correlated with the risk

New direction of derailment investigation
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• Updated IWS processor to output the W/R vertical contact 
position and contact angle by adding in the wheel profile 
information of the IWS

New output based on the needs
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How is W/R contact position-based geometric criterion 
more advanced in assessing the risk of flange climb 

derailment?
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Strength of W/R Contact Position-based Criterion
• Comparison between L/V ratio and lateral contact position

– The trends are quite a bit different
sensitive to real derailment risk
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• Assess risk of derailment correctly even when the coefficient of 
friction is unknown

Results of new contact position-based evaluation
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• Describe the whole derailment process clearly and assess risk of 
derailment correctly

W/R contact position
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• For the 4-mph run, the contact angle was 32 degrees after passing 
the maximum contact angle
– If above information was known at that time, the test would have been 

stopped at 4 mph to ensure safety

Derailment prevention
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• On the 6-mph run, there was about 20 feet and over 2 seconds of 
time between the 1.0-inch vertical contact position and 
derailment location

Possibility to mitigate the loss
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Whole process of the derailment
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Conclusions:
• Independent of the W/R frictional coefficients and positively 

correlated with the risk of derailment, the W/R contact 
position-based geometric criterion is an effective method to 
determine the risk of flange climb derailment

• High accuracy IWS is critical to relevant implementation
• TTCI is now implementing this method to help assess 

derailment risk during testing
• The W/R contact position is recommended as an index for 

derailment risk assessment in the future
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