Utilizing Software to Accelerate the Adoption of Preventive Maintenance at NYCT

Wesley Thomas, Sentient Science

RAIL TRANSIT SEMINAR • OCTOBER 18, 2021

1

Agenda (15 Slides)

- **Challenge:** State of Good Repair Budgeting (1)
- **Opportunity:** NYSERDA Innovation Program (1)
- **Case Study:** Economic Model Insights (7)
- **Case Study:** Grinding Simulation (4)
- **Next Steps:** Enterprise Asset Management (1)
- Thank You: Questions and Answers (1)

Challenge: Fund State of Good Repair

In 2018, Sentient Science attended 5 transit conferences to meet 57 end users across 25 transit agencies.

Agencies could not provide evidence to quantify the benefits of preventive maintenance for procurement decision making:

- Request preventive maintenance funding
- Protect existing preventive maintenance budgets
- Differentiate performance of maintenance contractors

Opportunity: NYSERDA PON3914

- NYSERDA Public Transit Technology and Innovation Program
- Demonstrate at New York City Transit
 - (NYCT) RAIL TRANSIT SEMINAR • OCTOBER 18, 2021
 - Support from 5+

SentientScience

Economic Model – Full Network

Identify Total Rail Spending and Root

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021

Causes

Economic Model – Full Network

Surface Related Defects are #1 Root Cause

Economic Model – Specific Line

Higher Replacement, Lower Preventive

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021

Funding

Economic Model – Elevated Track

No CWR or Grinding Available

for Rail

ECONOMIC MODELS

S MO

WEAR MODE

RCF & GRINDING MODELS 9

Wheel Rail Interface (WRI) 2021 - Transit S	Seminar - Full Netwo	ork / Baseline [2		100000			Project Settings
Equipment Cost			Total Lubricators Ground	0	0	Production Shift Hours Used by Other Delays	۵	1.88
Lease Cost per Production Shift	® s	20,000.00	Total Miscellaneous Special Track Ground	۲	0	Spark Time Hours per Shift	0	1.12
Lease Cost per Production Travel Day	® s	0.00	Total S&C Curves Ground	0	0	Total Shifts Required for Production Grinding	0	179
Lease Cost per Production Pass Mile Ground	® s	0.00	Total S&C Tangents Ground	0	0	Total Production Travel Days	0	0
Number of Production Grinders Owned	0	0	Total S&C Units Ground	0	0	Total Shifts Required to Execute Production Grind Plan	٢	179
Capital Cost per Production Grinder	® \$	0.00	Total S&C Passes Ground	0	0	Average Number of Passes (S&C)	•	5
Useful Life per Production Grinder (Years)	۲	20	Does Grinding Require Track Access?	True	•	S&C Spark Minutes Required per Switch Pass	0	0.5
Depreciation Cost per Grinder per Year	® s	0.00				S&C Spark Minutes Required per Crossing Pass	•	0.5
Total Equipment Cost of Production Grinding	® s	3,580,000.00	Labor Costs of Grinding			S&C Spark Minutes Required per Hot Box Detector Pass	0	1
Total S&C Grinding Equipment Cost	® s	0.00	Number of Laborers per Production Shift	۲	7	S&C Spark Minutes Required per Wayside Lubricators Pass	0	1
Capital Cost per S&C Grinder	® s	0.00	Number of Overtime Hours Required per Production Shift	۲	2	S&C Spark Minutes Required per Miscellaneous Special Track Ground		1
Lease Cost per S&C Shift	® s	0.00	Ratio of Grinder Maintenance Shifts Required to Grinding Shifts	0	1	S&C Spark Minutes Required for Curve Pass	0	1
Lease Cost per S&C Spark Hour Ground	®s	0.00	Total Grinder Maintenance Shifts Required	۲	179	S&C Spark Minutes Required for Tangent Pass	0	1
Lease Cost per S&C Travel Day	® s	0.00	Ratio of Grinder Maintenance Labor Cost Compared to Grinding Labo Cost	r @	0	Ratio of S&C Operating Minutes to Spark Minutes	0	1.5
Useful Life per S&C Grinder (Years)	۲	15	Total Grinder Maintenance Labor Cost per Shift	[⊕] s	0.00	Spark Hours Required for S&C Plan	0	0
Depreciation Cost per S&C Grinder per Year	@ s	0.00	Total Labor Cost of Production Grinding	® s	833,245.00	Hours pe <u>r S&C</u> Grinding Shift	Ø	8
Number of S&C Grinders Owned	onor	nic	Model Track		CAS	s Required +	•	

Calculate the cost/benefit of additional track time & shift efficiency

Economic Model – Unguarded Curves

Wear is higher % of root cause, but Surface is

Economic Model – Budget Cuts

33% to 50% Cuts due to COVID-19

challenges

Case Study: Grinding Simulation

- Identified 4 locations
- Identified 8 use cases
- Started by comparing grind freq. and budget

Case Study: Grinding Simulation

- Sharp unguarded curve
- Wear and defects leading to replacement
- Grind for corrugation

Case Study: Grinding Simulation - Increased Grind Frequency

75% Life Extension due to 2x per year grinding

Case Study: Grinding Simulation - Increased Grind Frequency

\$1M Savings over 10 years on single curve due to 2x year grinding

<u>Trapeze Group and Sentient Science Announce EAM Partnership</u></u>

Get the Rail Maintenance Evidence to Show the Business Case

Thank you!

Reach Out:

- Free Economic Tools
- Data Quality Guidance
- Program Updates

Acknowledgements: Alexandre Woelfle (NRC-C), Eric Magel (NRC-C), Wei Huang (NRC-C), Dr. Ankur Ashtekar (Sentient), Ashkan Darbani (Sentient), Mark Reimer (ARM), Tom Lamb (NYCT), Tony Cabrera (NYCT), Rob Sarno (NYCT) +

RAIL TRANSIT SEMINAR . OCTOBER 18, 2021

Wesley Thomas SVP & GM, Rail wesleythomas@sentientscience.com (716) 550-0101

