Integrated rail maintenance for maximizing rail and track life

Dr. Richard Stock

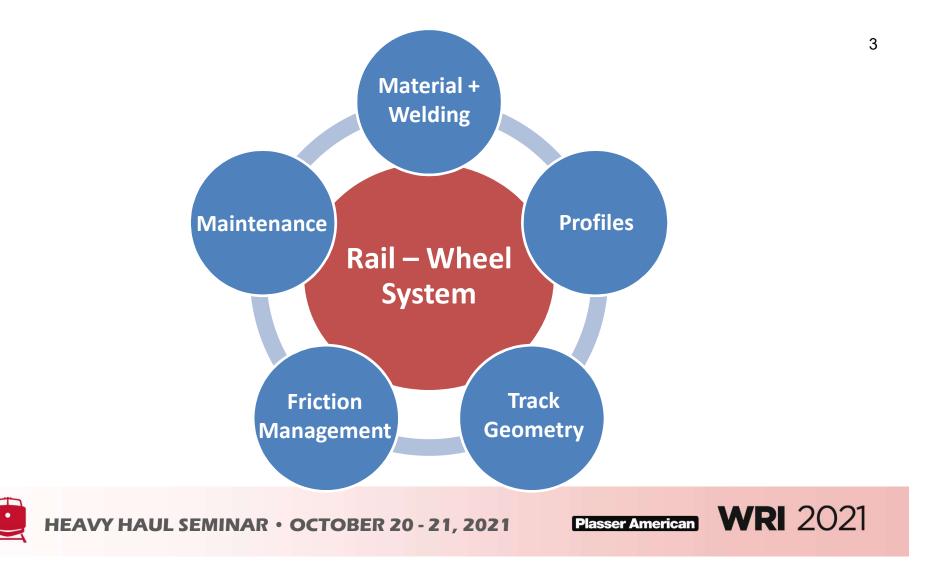
Global Head of Rail Solutions, Plasser American

HEAVY HAUL SEMINAR · OCTOBER 20 - 21, 2021

1

Content

- Rail-Wheel System
- Application examples
 - Sweden / Norway
 - Canada
- Summary

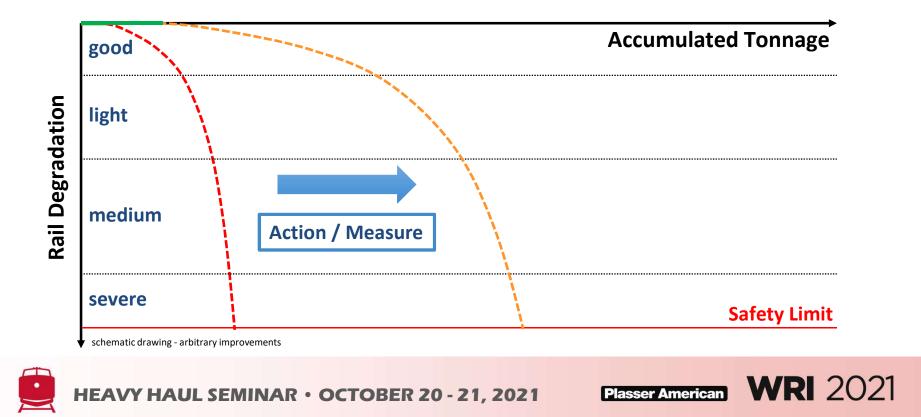


HEAVY HAUL SEMINAR • OCTOBER 20 - 21, 2021

Plasser American

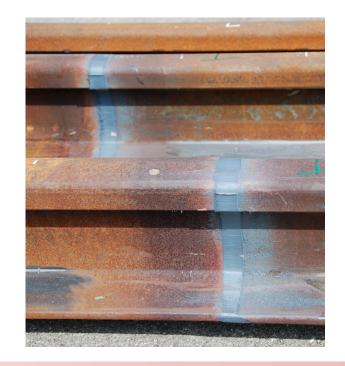
Rail Material

- Rail grade selection
 - Premium (heat treated) rails
 - Optimised material structure for advanced behaviour
 - Improved damage and wear resistance
 - Rail life extension
- Delay rail degradation



Plasser American

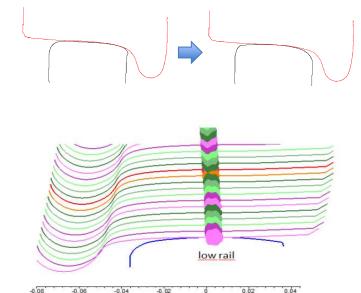
WRI 2021



Delay Rail Degradation

Rail Welding Technology

- Every connection is a discontinuity
- Welding technologies:
 - Thermite welding
 - Flash butt welding
- Goal: long lasting rail connection that has similar / same material properties as the rail material
 - Ideally: joint not "felt / seen" by passing train
- Prevention of premature damage on welds



Rail / Wheel Profiles

- Optimised profiles
- Reduced contact pressure
- Improved steering (curves) and stability (tangent)
 - Reduced tangential forces and flanging
 - No hunting in tangent track
- Delay rail degradation

7

-0.06

-0.04

^{-0.02} A. Jörg, R. Stock, S. Scheriau, H.P. Brantner, B. Knoll, M. Mach, W. Daves. The Squat Condition of Rail Materials - a Novel Approach to Squat Prevention. Proceedings of CM2015 conference.

Track Geometry

- Tangent, transition, curve
- Gauge, alignment (horizontal), profile (vertical), crosslevel
- Quality of subsoil, ballast, sleepers, rails
- Low track quality high (dynamic) forces
- Optimised track quality delay of degradation

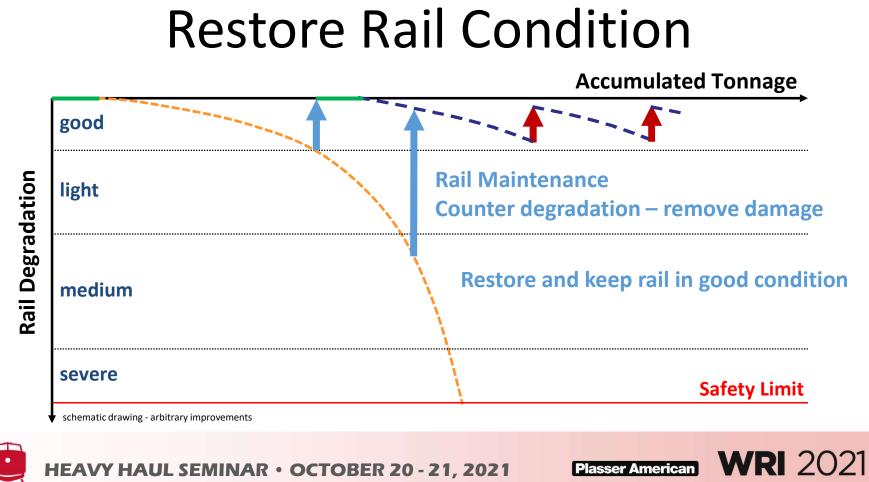
Friction Management

- Friction Management
 - GF & TOR friction control
 - Improved steering
 - Reduced (tangential) contact stresses
 - Reduced plastic flow, wear and RCF
- Delay formation of damage

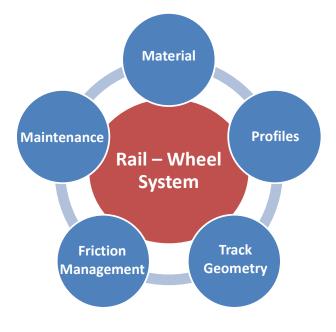
Photo by L.B. Foster Rail Technologies

Rail Maintenance

- Rail Maintenance
 - Grinding and Milling
 - Corrective/regenerative: reset/restore your rail condition
 - Preventive / Predictive: keep your rail in healthy condition
- Remove damage and keep profile in "shape"



HEAVY HAUL SEMINAR • OCTOBER 20 - 21, 2021


Plasser American WRI 2021

Integrated Maintenance

- Apply a consequent system approach
- Combine Rail Maintenance with other measures
 - Key factor as it can remove damage
- Maximum system life

Example 1 - Acknowledgement

- Special Thanks to:
 - Mathias Asplund / Trafikverket
 - Wolfgang Schöch / retired Speno
 - Alexander Baltzewitisch / Speno
 - Rainer Hochfellner / voestalpine
- Literature:

[1] M. Asplund, S. M. Famurewa, and W. Schoech, "A Nordic heavy haul experience and best practices," *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit*, vol. 231, no. 7, pp. 794–804, Aug. 2017, doi: <u>10.1177/0954409717699468</u>.

[2] M. Asplund, S. A. Khan, and T. Nordmark, "Improved wheel-rail system of Sweden's iron ore line," in *Proceedings of the 11th International Heavy Haul Conference (IHHA 2017)*, Cape Town, 2017, pp. 759–766.

[3] M. Asplund and W. Schoech, "Cyclic and special wear-adapted rail profile grinding - experience gained on Malmbanan heavy-haul railway, and scope for implementation elsewhere.," Rail Engineering International, vol. Edition 2018, no. 2, pp. 10–14, 2018.

Example 1: Iron Ore Line

- Northern Sweden and Norway
- Iron Ore traffic mixed with passenger and freight trains
- 32.5t axle load / 30 MGT per year
- Train: 68 cars, 1 double loco
- Electrified, mountainous line
- Extreme weather: wet and dry, cold (-40°C) and hot (30°C)

Plasser American

HEAVY HAUL SEMINAR • OCTOBER 20 - 21, 2021

Photo: Spend

WRI 2021

14

Initial Conditions

- Track renewal between 2006 and 2009
 - R350LHT heat treated (premium) rails
 - Concrete sleepers, elastic fasteners
- As rolled profile (BV 50/60E1)
- Given wheel profiles for locomotives and ore cars

ιoto: Kabelleger / David Gubler (http://www.bahnbilder.ch), CC BY-SA 3.0 <http://creativecommons.org/licenses/bγ-/3.0/>, via Wikimedia Commons

Initial Challenges

- Wear and RCF of rails
 - Gauge widening in sharp curves
- Factors:
 - Increased traffic, axle loads and length of trains
 - Climate conditions
 - Less time for maintenance
- Cyclic rail grinding
- GF lubrication for curves R<650m

Photo: [1]

Monitoring Program

- Without problem quantification no solution can be found!
- Close monitoring program
 - rail and wheel profiles
 - cracks by eddy current
 - track geometry
- At least two times per year measured

WRI 2021

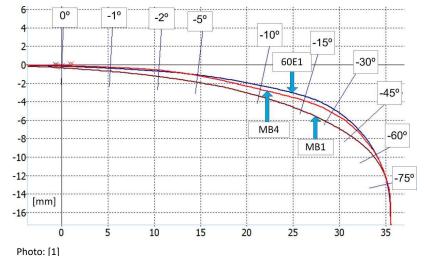
17

Photo: [3]

Plasser American

Rail Grade Optimisation

- R350 LHT profile installed between 2006-2009
- R370CrHT (370 LHT) was installed in test curves
 - Less wear but not enough RCF reduction to extend grinding
- R400HT test program (in progress)
 - Potentially safe one grinding cycle
- Welding not a problem


Photo: Speno

Rail Profiles - I

- MB1 profile introduced to combat RCF (high rail)
 - Curves < 650m radius</p>
- MB4 as fine-tuning of MB1 (less undercutting at GC)
 - Tangent track
- MB4 also introduced for switches

Plasser American

WRI 2021

Rail Profiles - II

- Introduction on MB6 for low rail
 - Based on hollow worn wheels
 - Wider low rail contact area and less low rail damage
 - Curves > 650m and gauge
 widening areas

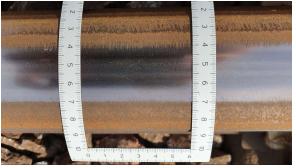
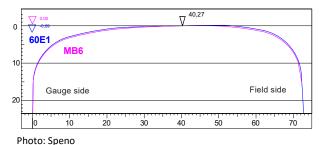
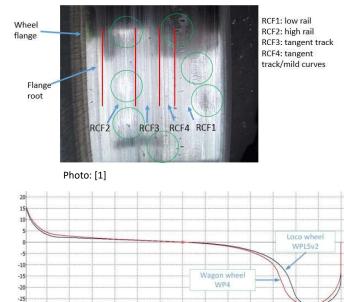



Photo: Speno

Wheel profiles - I

- Wagon wheels:
 - Good performance
 - Reprofiling: 180,000 200,000 km
- Failure modes:
 - 55% RCF
 - 45% wear
- Locomotive wheels
 - Problem: reprofiling 25k 110 kkm



Wheel profiles - II

- Locomotive wheels different damage zones identified
 - Low rail / high rail / field / gauge contact
- New locomotive wheel profile developed: WPLX5V2
- Harder wheel steels and modified electro-dynamic braking implemented

70

Plasser American

Photo: M. Asplund

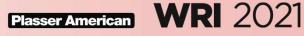
80

90

100

110 120 130

WRI 2021



Track Geometry

- In general track quality at very high level
- Certain areas: problem with gauge widening
 - Up to 2.4mm/year
 - Increased low rail RCF
- Standard Gauge: 1435mm
 - Gauge limit: 1450mm
- Introduction of MB6 rail profile
- Close monitoring with measurement cars
 - Investigation into dynamic gauge widening

TOR Friction Control

- Simulation results encouraging
- Tests with different materials and application systems (wayside)
- Harsh winter conditions
 - power problem and accessibility (maintenance)
- Challenges with carry down and according measurements
- On board better solution no trials yet

Photo: [2]

HEAVY HAUL SEMINAR • OCTOBER 20 - 21, 2021

Plasser American WRI 2021

Maintenance

- Corrective grinding since 1970ies
- Annual grinding introduced 2008 (following track renewal)
- Traffic increase denser grinding interval to combat RCF (2014)
 - 15MGT sharp / 30 MGT mild curves, 90 MGT tangent
 - "Heavy" campaign in May curves and required tangents
 - "Light" campaign in October curves only

25

WRI 2021

HEAVY HAUL SEMINAR · OCTOBER 20 - 21, 2021

Plasser American

Maintenance

- Target Metal removal
 - TOR: 0.2mm
 - GC/GF: achieve target profile
- Total metal removal lower than previous once-a-year campaign (GC)
- RCF well controlled at first

Maintenance

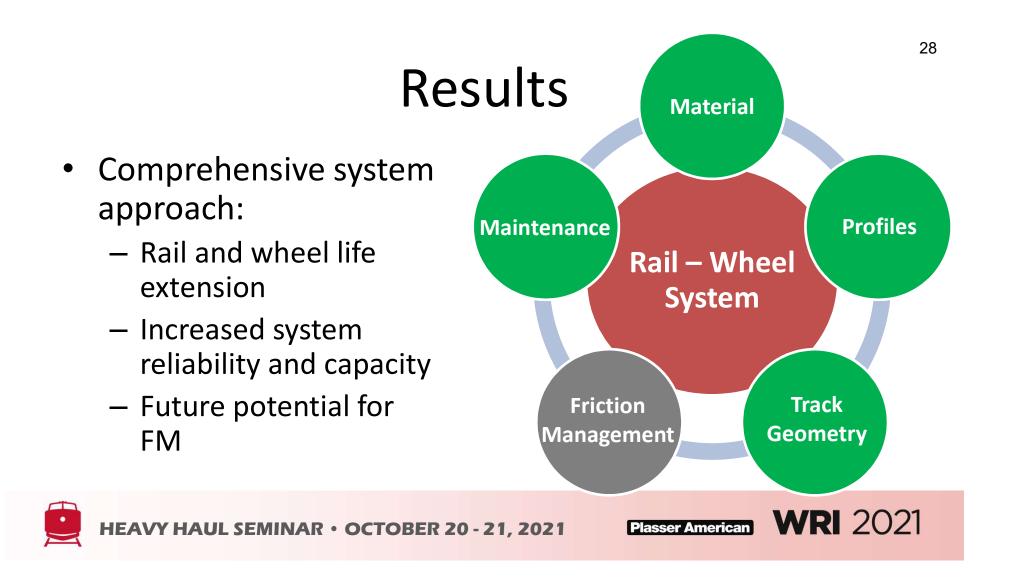
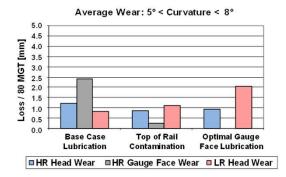
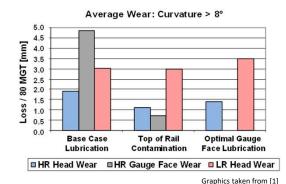

- Seasonality in RCF growth observed
 - Detected by Eddy current measurements
- In warm dry summer (Jun Sep) faster RCF development.
 - Assumed reason: friction conditions
- Adoption through switching "heavy" and "light" cycles
- Elimination of all RCF defects after grinding

Photo: [1]

Example II – North America

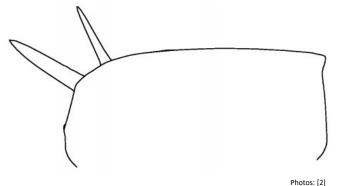
Literature:


- [1] P. Sroba, M. Roney, R. Dashko, and E. Magel, "Canadian Pacific Railway's 100% effective lubrication initiative," in *Proceedings of the AREMA 2001 Annual Conferences*, Chicago, USA, 2001, p. 16.
- [2] P. Sroba, R. Michael, E. Magel, and J. Kalousek, "The Evolution of Rail Grinding on Canadian Pacific Railway to Address Deep Seated Shells in 100% Effective Lubrication Territories," Montreal, Canada, 2006.
- [3] P. Sroba, K. Oldknow, R. Dashko, and M. Roney, "Canadian Pacific Railway 100% Effective Friction Management Strategy," in *Proceedings of the 8th International Heavy Haul Conference (IHHA 2005)*, Rio de Janeiro, 2005, pp. 93–102.
- [4] M. Roney, D. T. Eadie, K. Oldknow, P. Sroba, and R. Caldwell, "Total Friction Management on Canadian Pacific," in *Proceedings of the 9th International Heavy Haul Conference (IHHA 2009)*, Shanghai, China, 2009, pp. 846–854.
- [5] M. Roney, S. Bell, S. Paradise, K. Oldknow, and J. Igwemezie, "Implementation of Distributed Power and Friction Control to Minimize the Stress State and Maximize Velocity in Canadian Pacific's Heavy Haul/Heavy Grade Operations," *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit*, vol. 224, no. 5, pp. 465–471, Sep. 2010, doi: <u>10.1243/09544097JRRT366</u>.
- [6] S. Paradise, R. Stock, M. Santoro, "Friction Management and Rail Wear CPs Western Corridor: 2008 2016," *Presentation at the WRI Conference 2017*, June 2017

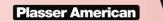


North America/Canada

- Application of target profiles (wear, RCF) and cyclic grinding since the 1980ies
- 2001: NRC "100% effective lubrication" project at CP [1]
 - Near elimination of GF wear (+demonstrated fuel savings)
 - Increase of AOA with increase in TOR wear



System Impact


- Reduced GF wear but increased shelling at GC
 - 30% increase in emergency rail replacement
- Rail profile optimized for specific wear conditions
 - Rail would quickly wear in to a 2point conformal contact
 - GF lubrication: no wear and high stress 2-point contact

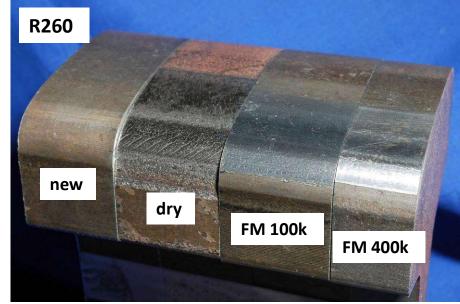
HEAVY HAUL SEMINAR • OCTOBER 20 - 21, 2021

31

System Solution

- New rail profiles to reduce stresses in mild and sharp curves
 - Good steering, less stress, 2-pt conformal contact
- Adapted grinding strategies to remove damage / create profile
 - Grinding to 60° angle
 - Preventive gradual strategy

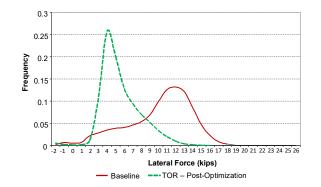
Photos: [2]

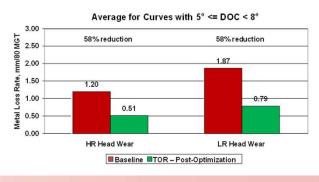


Friction Management

Source: L.B. Foster

- GF lubrication only high AOA and TOR wear, RCF
- TOR friction control reduce friction to intermediate level
- TFM: combined application of GF + TOR




HEAVY HAUL SEMINAR · OCTOBER 20 - 21, 2021

Plasser American WRI 2021

Effects of Friction Management

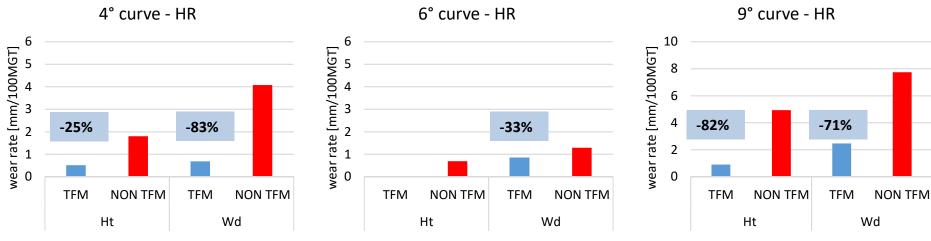
- NRC "100% Effective Friction Management" Project (2004-2005)
 [3], [4], [5]
- Measurement with L/V sites
 - Lateral forces reduced by 24% 40%
- No GF wear
- Vertical wear (L/H) reduced by 50%

Track Geometry

- Advanced analysis of required superelevation (SE) bandwidth
 - Uphill vs. downhill
 - Train type and within a train
- Track adjustments cannot solve the problem
- Optimised distributed power + FM to narrow the SE bandwidth
 - Adjust SE in specific corridors

Photo: CP [5]

TFM: 10 years later


- Re-evaluation of FM results in 2017 [6]
 LB Foster, CP
- Analysis of three subdivision with and without FM
- Curves: 4°, 6° and 9° curve
- Data source: Geometry Car and Rail Grinder

HEAVY HAUL SEMINAR · OCTOBER 20 - 21, 2021

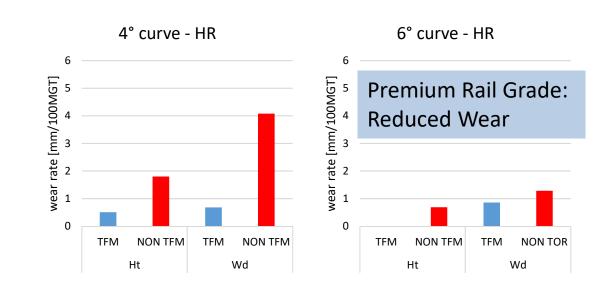
WRI 2021

Plasser American

Natural Wear – High Rail

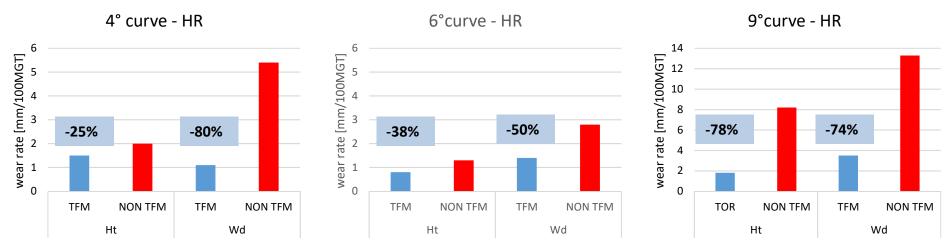
Ht: Vertical Wear Wd: Gauge Wear

Source of graphics: [6]


High rail: GF and TOR wear reduced

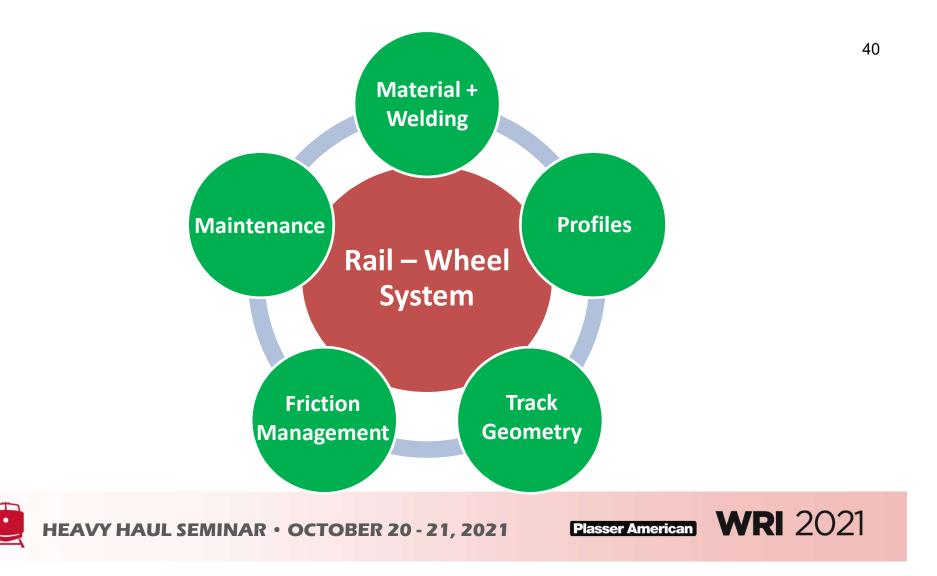
37

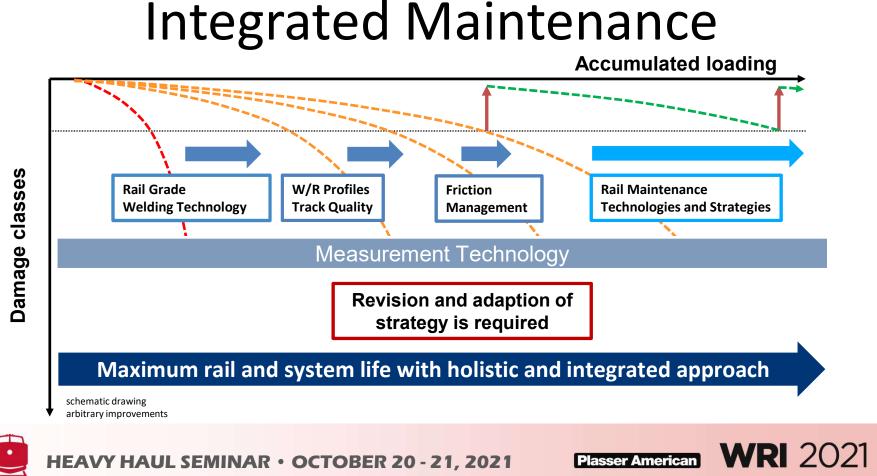
Rail Grade Influence


 Intermediate Grade (4° curve) vs.
 Premium Rail Grade(6° curve)

Source of graphics: [6]

Impact on Grinding




Less metal removal in TFM curves

39

Source of graphics: [6]

Thank You for Your Attention

Plasser American

