Wheel-Rail Damage Mechanisms

Dr. Richard Stock

Milling Technology Manager, Linsinger

Outline

- Rail materials
- Wheel / rail damage mechanisms
- Controlling rail damage

RAIL MATERIALS

Fe-C Diagram (simplified)

- Iron: melting point: 1536 °C (2796.80 °F)
- Steel = Alloy of iron (Fe) + carbon (C)
- Iron phases:
 - Austenite (Gamma)
 - Ferrite (Alpha)
- Carbide: Cementite
- Pearlite structure
- Other alloying elements to adjust properties
- Rail steel: 0.4 1.1 % C

Lattice Structure of Steel

- Face centered cubic (fcc)
 - Austenitic steel
 - Sufficient space to dissolve C atoms
- Body centered cubic (bcc)
 - Ferritic steel
 - Denser packing of C-atoms than fcc
 - Very limited space to dissolve C atoms

By Johannes Schneider, CC-BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41537390

Austenite

Austenite

- Gamma-phase (face centered cubic)
- Can contain up to 2.06 % C
- Low hardness (70-250 BHN)
- Stable above 723°C (1333°F) or at RT by alloying Ni, Co, Mn
- Main part of corrosion resistant steels, shape memory alloys
- Non magnetic
- Not used in rail steels (usually)

Pearlitic Microstructure

- Two phase material:
 - Ferrite: very soft, $C_{max} = 0.02\%$, BCC lattice
 - Cementite: Fe_3C , very hard, C = 6,67%
- Lamellar or layer structure
- Pure pearlitic structure at 0.77% C (Eutectoid point)
 - C > 0.77%: Hypereutectoid Steel
- Lamella spacing defines hardness and strength without influencing the toughness (heat treatment)
- Rail Materials

Austenite – Pearlite Transformation (simplified)

Impact of Heat Treatment

- Heat treatment = faster cooling (removal of heat)
- Less time for C diffusion / travel shorter C travel distance
- Smaller lamella distance

Standard cooling

Accelerated cooling

Grade R260 C: 0.7%

Grade R350HT C: 0.7% + heat treatment

Bainite

- Two phase material: Ferrite & Fe₃C
- Produced by accelerated cooling or alloying
- Intermediate structure, needle like or plate structure of ferrite and carbide
- Upper, lower or carbide free Bainite
- To some extend used for rail steels

Martensite

- Produced by high cooling rates, alloying
- Hard (450-760 BHN), low ductility
- Tool steels (cold working-, hot working-, high speed steels)
- Trip steels (transformation induced plasticity)
- Must not have for rail steels
 - The dose makes the poison!
 - White etching layer (WEL) on rail surface

Important to Consider – Properties

- Different microstructures:
 - different steel types and applications
- Steel material properties:
 - function of the microstructure
 - Hardness, strength, toughness etc.: response of material structure to specific loading/testing situation

Important to consider - comparability

- Steel material properties:
 - Comparable result only for similar microstructures
 - Loading conditions in wheelrail contact significantly different from standard test/loading conditions

Smial [CC BY-SA 2.0 de (https://creativecommons.org/licenses/by-sa/2.0/de/deed.en)]

Important to Consider – Hard and Brittle

- All rail steels are ductile
 - Different ductility for different grades
 - No rail steels shows brittle behaviour
 - However: rail breaks can/will show a brittle fracture component
- Premium steels are heat treated
 - Head hardening only tells half the story
 - Hardness and strength increased

- (a) Brittle fracture
- (b) Ductile fracture
- (c) Completely ductile fracture

Sigmund [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

WHEEL / RAIL DAMAGE MECHANISMS

System Deterioration

Rail Damage

- Plastic deformation
- Wear
- Corrugation
- Head Checks / GCC
- Flaking and Spalling of Head Checks
- Shelling
- Squats
- Belgrospies
- Wheel Burn

Damage Behaviour

Material:

- Material structure (Pearlite,
 Cementite, Ferrite,...)
- Mechanical properties
 (strength, hardness, ductility, ...)

• W/R Load:

- Vertical (contact pressure), tangential (creep, shear)
- Duration and severity

Material Behaviour Under Load

accumulated plastic strain / plastic deformation

Plastic Deformation

- Contact loads always above elastic material limit.
- On a microscopic scale close to the rail surface.

Material Response: Deformation

Plastic Deformation

- On a macroscopic scale – change of profile shape.
- Material flow e.g.
 lipping

Wear of Rails

- Continuous material removal from the rail surface due to interaction of wheel and rail.
- Several modes of wear
 - Adhesive wear
 - Abrasive wear
 - Fatigue wear
 - Corrosive wear
- Several types of wear
 - Natural Wear } Combined Wear
 - Artificial Wear

Photo by L.B. Foster

Material Response: Wear

Rail surface Non-deformed, initial material condition Schematic drawings Loading conditions, material properties Severely deformed rail surface Mild wear Severe wear

Corrugation

- Wave structure on the rail surface (tangent / curve)
- Short wave (25mm-80mm wavelength) or long wave (100-300mm) corrugation
- Multiple sub-classifications
- Combination of wear and plastic flow

Photos by L.B. Foster

Material Response: Cracks

Magic Wear Rate

Head Checks / Periodic Cracks

- Head Checks: periodic cracks at the gauge corner (gauge corner cracking)
- Heavy Haul: periodic cracks and crack networks also on the running surface
- Can cause detail fracture if not treated

Crack Growth Phases

Flaking and Spalling

- Head Checks can combine causing material to break out of the rail surface.
- Head Checks Flaking Spalling

Shelling

- Originates underneath the rail surface
- Delamination of rail material – crack will surface at gauge corner and cause break-outs
- High loading conditions favor formation

Squats

- Widening of running band / dip
- Typical kidney shaped
- Surface and subsurface crack(s)
- Singular or massed occurrence
- Characteristics
 - Heavily sheared rail surface
 - Crack initiation and growth by ratcheting (RCF)
 - slow growth (within 100 MGT)
 - Can result in rail break

Photos by voestalpine

Squat Type Defects / Studs

- Superficial similarity to Squats
- Mostly epidemic appearance
- Extended spalling of rail surface possible
- Characteristics:
 - Almost no plastic deformation
 - Associated with "white etching layers" (martensitic layers)
 - Formation within 10MGT or less
- Multiple contributing factors
 - Wear behaviour, R/W profiles, traction/friction conditions, system stiffness, rail maintenance activities

Belgrospies

- First detected at high sped lines in Germany.
- Associated with high-speed traffic only (v > 200kph / 125mph).
- Crack nests at corrugation peaks.
- First found by three railway employees named Belz, Grohmann and Spiegel

Wheel Burn

- Occurs in pairs (both rails)
- Continuous slipping of locomotive wheel set(s).
- High temperature input to rail surface.
- Wear, material transformation (Martensite), break outs

Selected Damage on Wheels

- Wear
- Polygonised wheels
- Wheel flat
- Wheel spalling
- Wheel shelling
- Fish scales / tread checking

Wheel damage examples

Hollow worn wheel / thin flange

CONTROLLING RAIL DAMAGE

Controlling Rail Damage: Material

- Rail Grade Selection
 - Premium (heat treated) rails
 - Optimised material structure for superior behaviour
 - Improved damage and wear resistance
 - Rail life extension

Controlling Rail Damage: Contact

- Profile optimisation
 - Reduction of contact stresses
 - Improved steering
- Track geometry optimisation
 - Reduced dynamic forces

Controlling Rail Damage: Friction

- Friction Management
 - GF & TOR friction control
 - Improved steering
 - Reduced (tangential)contact stresses
 - Reduced plastic flow, wear and RCF

Photo by L.B. Foster Rail Technologies

Controlling Rail Damage: Maintenance

- Rail Maintenance
 - Grinding and Milling
 - Remove damage and keep profile in "shape"
 - Corrective: reset/restore your rail condition
 - Preventive / Predictive: keep your rail in healthy condition

Summary

- Steel material microstructure
 - Microstructure determines properties and behaviour
 - Typical rail steel: pearlitic steel
- Rail / wheel damage types
 - Plastic deformation, wear, cracks
- Controlling rail damage
 - Material selection, w/r profiles, track geometry, friction management, rail maintenance

Rail/Wheel System Management

Thank You for Your Attention

Questions?

