Vehicle-Track Modeling and Simulation

by Ralph Schorr, PE

1

Objectives for Multi-Body Simulations

- Safe operation of the railroad vehicles
- Provide best dynamic performance (pass required tests)
- Parametric studies
- Determine speed constraints for wheel/rail conditions
- Predict new and/or worn condition performance
- Determine cause of derailments
- Wheel/Rail wear and RCF prediction studies *

Governing Laws of dynamic simulations

1st Law An object at rest will stay at rest , and an object in motion will remain in motion at a constant velocity , unless acted upon by an unbalanced force.

Law of Inertia

2nd Law Force equals mass times acceleration. Force = Mass * Acceleration

3rd Law For every action there is a reaction.

Amsted Rail

Action - Reaction

WRI 2018

Basic Motion equations

These Basic equations quickly evolve Into advanced Multi-Body systems with a large number of Degrees-of-Freedom in a stiffness Matrix

Multi-Body Simulation software

PRINCIPLES COURSE . MAY 1, 2018

EQUATIONS: LINEAR VS. ROTATIONAL MOTION

Linear Motion Equations	Rotational Motion Equations
s = v _{avg} t	$\theta = \omega_{avg} t$
$s = v_i t + \frac{1}{2} a_{avg} t^2$	$\theta = \omega_i t + \frac{1}{2} \alpha_{avg} t^2$
$v_{avg} = (v_f + v_i)/t$	$\omega_{avg} = (\omega_f + \omega_i)/t$
$a_{avg} = (v_f - v_i)/t$	α_{avg} = ($\omega_{f} - \omega_{i}$)/t
$2a_{avg}s = v_f^2 - v_i^2$	$2\alpha_{avg}\theta = \omega_{f}^{2} - \omega_{i}^{2}$

Currently available programs

Multi-body simulation programs

- NUCARS®
- VAMPIRE®
- GENSYS
- Adams/Rail
- SIMPACK Rail
- Universal Mechanism
- VI-Rail

Co-simulation add-ons

- Simulink
- Matlab
- CONTACT Vortech.nl
- Archard's wear model

Train Operations and Energy Simulator (TOES™)

TOES[™] is a comprehensive train dynamics model

- Developed for and licensed to AARmember railroads
- Models longitudinal motion of each vehicle in the train
- Ability to simulate many operating scenarios
- Contains several pre- and postprocessor tools
 - ▲ Build simulation environments
 - ▲ Analyze simulation results

PRINCIPLES COURSE . MAY 1, 2018

6

Simulation of Train Action to Reduce Cost of Operations (STARCO™)

- STARCO[™] is a version of the TOES[™] software available to railways operating outside of North America
 - STARCO offer the same basic simulation capabilities as TOES software
 - Models longitudinal train action given train, track, and operation inputs
 - Allows simulations using track profiles and rolling-stock specific to the licensed railway
 - Several licensed users around the world

PRINCIPLES COURSE . MAY 1, 2018

7

Software MBS validation

- Manchester Benchmark 1997 originated by Simon Iwnicki at Manchester University
- Results showed that 3 of the 5 programs provided good agreement with reasonable results
- GENSYS, NUCARS® and VAMPIRE®
- Models were produced by experts in the specific software being reviewed

Manchester benchmarks: Universal Mechanism models

Manchester benchmarks: Comparison of simulation results ADAMS/Rail – UM Vehicle 1, Track 1 ADAMS/Rail

Manchester benchmarks: Comparison of simulation ¹¹ results ADAMS/Rail – UM

Vehicle-Truck Dynamics

- Track Input
- Wheel to Rail Contact
- Mass/Inertias (Car Body, Truck Components)
- Dynamic Influences (CG, bogie center distance)
- Friction
- Spring Suspension
- Suspension Damping (or hydraulic damping)
- Speed (design or unbalance condition)

Track geometry files

Measured track

SC for Space Curve PR is Profile AL is Alignment

Track Irregularity File

Measurement of turnout is displayed

VAMPIRE Plot

NUCARS® Track Model

NUCARS[®] UI track model available soon

16

- Multi-layer flexible track model capability.
- Simulations of single and multiple rail vehicles running on the track are possible.

NUCORS[®]

Vehicle-Track Model Display

17

Critical Modeling attributes

- 1. Wheel Set back-to-back dimension
- 2. Wheel Profile of both wheels
- 3. Wheel tapeline dimension of both wheels
- 4. Rail Gauge and how it is measured (I.E. gauge point)
- 5. Rail Profile of both rails
- 6. Rail Cant (incline or inward tilt) of each rail (1:20,1:30 or 1:40)

Modeling masses in rail direction

Calculating Inertia

 $Ix = (1/12)mass(h^2 + w^2)$ $Iy = (1/12)mass(L^2 + h^2)$ $Iz = (1/12)mass(L^2 + w^2)$ Additional mass Inertia $Ixx = Ix + mr^2$ $lyy = ly + mr^2$ $Izz = Iz + mr^2$ r – distance to CG Ixx --- roll inertia

Izz --- yaw inertia

3D models for computing Inertia

Modeling all Degrees Of Freedom

- All masses must be properly constrained6 DOF per mass, except axles with 53 Flexible body DOF (when needed)
- Dynamics analyst must decide how to represent each connection

Truck Friction Wedge Modeling

Laboratory Testing

- -Component Characterization
- -Suspension Testing
- -Spring Testing & Calibration

Springs (energy storage)

Vertical Spring rate = (G*d^4)/(8*(OD-d)^3)*N Where: G = Shear Modulus of Elasticity N = number of active coils

Shear modulus 11.0 E6 psi - 11.6 E6 psi N equals (Solid height/wire diameter)-1.5

WRI 2018

25

Hydraulic Dampers

- Non-linear
- Inactive zones
- Compression/Extension

Example truck display

Display of wheel/rail results

29

Comparison of lead bolster vertical and lateral accelerations

Vampire result vertical g's +.855 to -0.911 in red

Test result vertical g's +0.663 to – 1.07 in green

Review of Animation

Wheel/Rail Processing & Analysis Tools

Wheel wear result window - UM

M-976 Testing Regimes

• AAR M-1001 Chapter 11 AAR M-976 Truck Performance Specification

Regime	Car Type	Condition 3
Hunting	Covered Hopper 4427 cu.ft.	Empty
Steady State	Covered Hopper 4427 cu.ft.	Empty
Curving		Loaded
Curve Resistance	Covered Hopper 4427 cu.ft.	Loaded
Spiral	Covered Hopper 4427 cu.ft.	Empty
		Loaded
	Covered Hopper 6000 cu.ft.	Empty
Twist Poll	Covered Hopper 4427 cu.ft.	Empty
TWISE, ROII		Loaded
Pitch Bounce	Covered Hopper	Empty
Pilch, Bounce	4427 cu.ft.	Loaded
Yaw, Sway	Covered Hopper 4427 cu.ft.	Loaded
Dynamic Curving *	Covered Hopper 4427 cu.ft.	Loaded

* Courtesy of Universal Mechanism

Evaluation of exposure to whole body vibration³⁸

Dynamics In Action Pitch and Bounce

Dynamics In Action high speed stability ⁴²

Wheelset/track Dynamics

- Wheel-set / Track Alignment
- -Tapered Wheels
- Rolling Radius
- Tangent same
- Curve outside larger than inside
- Wheels over travel and do not reach steady-state
- Wheels search or "hunt" for center, moving in a sinusoidal path

NUCARS® Output & W/R Animation in Curve

NUCARS® W/R Animation w/ Track Model

45

Scandinavian Vibration transmissio[®] issue

Problem: 5.5 hz to 6 hz reported at cabin *6 hz measured as wagons pass cabin resulting in observed cracks in foundation

- New ore wagons with revised spring group
- Dynamic analysis was suggested

WRI 2018

Measured data

FFT frequency 30 wagons Config: 10 + 20 Date: 170216 Time: 17:23:06 Speed: 50,8 km/h (51,0-50,5 km/h) MP: MP 33 Spåret Dir:

Simulation results

Natural frequency of the bogie suspension ~ 5.6 Hz at 50 km/hour

- Spring stiffness changes had little affect
- Slower speeds reduced the frequency
- Slower speeds also reduced forces at rail

VAMPIRE Plot

Track file vertical irregularity

VAMPIRE Plot

Geometric influence

Bogie spacing of 7044 mm is about 2 times spacing wagon-to-wagon Conclusion the bogie spacing causes all the track inputs to match the natural frequency at 50 km/hour

Potential options for resolution

- 1. Slower speeds to reduce severity and frequency
- 2. Intersperse different length wagons in train
- 3. Build ground vibrations barriers
- 4. Apply longer couplers
- 5. Re-work the track geometry at/near cabin

Preferred action: re-work the track

Dynamic Simulation results

40 t/axle bogie for Ore wagon (353k lbs)

• SSRC

- SSRM
- New design Spring
- Optimized suspension
- High Speed Stability
- New Wheel profile ENSCO
- Passed track test in Australia

Benefits of vehicle-track simulations

- □ All modeling parameters can be studied
- No danger of derailments, damage or costly on-track tests
- □ Repeatability is assured
- Provides insight into significant influencers
- Provides understanding of complex interactions
- Parametric studies for optimization

Acknowledgements

"The Laws of Physics apply to every place in the world" Eric Magel at WRI-2013

Questions?

