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Agenda

1. Vehicle steering, stability and curving forces
2. Wheel-Rail profile design and performance

3. VTI Derailment Mechanisms and Risk
Assessment

4. Impact and Dynamic Loads
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VEHICLE STEERING
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The free rolling wheelset
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The free rolling wheelset
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The Free Wheelset - Hunting
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Equivalent Conicity from the AR plot

e British Rail derivation
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Wheel 2105791A  Diam. 940.00mm

ROLLING RADIUS DIFFERENCE GRAPH

F.back 1359.44mm Yaw  0.00mrad

Rail  113A-20  Gauge 1432.34mm Rotations:  0.000, 0.000rad
. . 6
Rolling Radius
Conicity Difference (mm)
05
0.4
4
0.3 —
02
0.1
24
2 4
Sigma (mm)
T T T T I T 1
-12 -8 -4 4 8
Wheelset Lateral Shift (mm)
~24
_a
_¢4

EQUIVALENT CONICITY 0292 0314
for sigma 1.250  2.500

Distribution centred at zero SHIFT
Truncated at =50 and  5.0mm

Rolling line offset 0.7mm

12

0.330
3.750

Canada
N3C-CN3C|

WRI 2018



10

A Truck can provide Stability

Damping
and
stiffness
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Leading wheelset: yaw angle

Rigid Truck
Self-steering

(flexible)
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Also, yaw angle due to deflection of suspension (bending and shear)




CURVING FORCES
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The Wheelsets (in a curve)

(leading) wheelset shifts to outside of curve

s

High/outside rail

Yaw angle o] !

Low/inside rail
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Creepage in a Single Wheel/rail -
Contact

- Longitudinal Creepage
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Lateral Forces (Creep) in Curves

’ Direction of Travel

AoA//

Direction of Travel

ey ;j%

Flange Force

Track Spreading
Forces

s
,t_,-;q; L

Y v /
ARRAAD

Friction Forces
(Lateral Creepage
from AoA)

Anti-Steering Moment
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mismatched rolling radii)
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Friction Circle

A
L=uVv
L: Lateral
Creepage or
Force T= ,uV
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N: Longitudinal
N=uV  Creepage or Force
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WHEEL-RAIL PROFILE DESIGN AND
PERFORMANCE
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Design of Engineered Rail Profiles

Rail design considers:

Track curvature

Worn wheel shapes

Types of vehicle and speed (hunting) e
Dynamic rail rotation + inhibit hunting

Rail hardness e
Grinding interval (profile deterioration between intervals)
Static gage
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The NRC family of heavy haul rail templates
(1990’s)
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Rail Profile Design Criteria

Goals are to reduce/control:
— Gauge face and TOR wear
— Rolling contact fatigue (RCF)
— Dynamic instability (hunting)
— Corrugation formation

— Wheel hollowing

And are easily or practically implemented by grinding

20
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Wheel/rail contact stresses

e Stress and damage depend High rail

on:

— wheel radius

Severe gauge-corner contact
— wheel load

— friction coefficient | False Flange

— wheel/rail profiles ‘_
(contact geometry) ‘,‘" Low rail

Hollow wheels
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Wheel / Rail Conformality
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» closely conformal (as per
hertzian spring)

0.1 mm (0.004”) or less
» conformal
0.1 mm to 0.4mm
(0.004” to 0.016")
* non-conformal

0.4 mm (0.0167) or
larger
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Some Typical Issues Associated with Wheel/Rail Conformality

Closely conformal profiles
Dynamic instability (hunting)
Corrugation formation by spin creepage
Conformal profiles
Low stress state W/R interface
Used for mass transit and high speed lines = 1PT conformal
(good for steering)
Heavy haul = 2PT conformal (balance contact stress steering and wear)

Non-conformal profiles

High stress state W/R interface
1PT: cracks (RCF) at GC of HR and FS of LR
2PT: high gauge face wear in curves

23
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Worn Wheel and Rail Profiles are Envelopes of Each
Other

* Worn rail is an envelope of all wheel
profiles that pass over it

Trailing Leading
Wheelset Wheelset

\ \
H.R. T.T. L.R.

* Worn wheel is an envelope of all rail
profiles it encounters on a particular
route
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Pummelling Analysis

Simulation
— Measured wheel profiles
— vehicle characteristics (stiffness, wheelbase etc.)
— rail hardness (for damage evaluation)
— rail curvature, super-elevation, dynamic rail rotation etc.

Evaluate distributions of
— contact stress

— steering moments
— effective conicity

Canada
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Pummelling: design/analysis tool
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Los Angeles

S,
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Families of Rail Profiles

iR,

dR-2.88 mm

Po=1430 MPa
Rwr=-47, Rr=31 mm PG
=65, b=2.3 mm

slope=0.1782
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HR-BT3, sharp
curves

HR-BT3, milder
curves

CPG-BT3, Tangent
Track

CPF-BT3, Tangent
track

LOW-BT3, milder
curves

LOW-BT3, sharper
curves



VTI DERAILMENT MECHANISMS
AND RISK ASSESSMENT

Wheel climb
Hunting

Low rail rollover

[N3C-CNiC
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WHEEL CLIMB
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Wheel/Rail Contact

* W/R contact often takes place at two points
simultaneously (some new wheels especially)

AAR1B-NF

CPR-8", RE141

31
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Wheel/Rail Contact (cont’d)
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* Plan view of contact ellipses on high rail for different angles of attack
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Deriving Nadal

Y
Force Balance: N
|—X ___________ -
D Fx=0= Nsin(5)— F; cos(6)—L =0 L _ tan6—F /N
> Fy=0=F,sin(5)+ N cos(5) -V =0 Vo l+F tano/N
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Nadal’s Relationship

L tano—pu
V 1+ utano
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Nadal Index (1908)
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Slip vectors at the gage face contact

s

5>f, =0

| o = angle of attack
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Gilchrist and Brickle

* Nadal is not generally correct, even in steady state conditions since longitudinal
creepage is also present at the gage-face wheel/rail contact patch

* Nadal provides a conservative threshold limit (i.e. indicates that the risk is higher
than it actually is)

— Very conservative for small or negative angles of attack
— Though adequate for more than about 5mrad yaw.
* Considered the out of plane geometry

* Note that the most dangerous condition occurs when there is no longitudinal slip
across the contact patch (i.e. the creep force is completely transverse, lifting the
wheel)

— Braking the wheelset in a curve
— Independently rotating wheelsets
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Long/Lateral Slip (single wheelset, 6 =63.5°, u=0.5,
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Lateral wheel/rail forces

Largest portion of L on high
wheel comes from creepage
on the low rail

|

Direction of travel

ﬁ

. . High/outside rail
Low/inside rail

Low/inside rail High/outside rail
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Weinstock derailment criterion
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* Atincipient wheel climb, the L/V values on the flanging and non-flanging wheels
are, for positive angles of attack, separated by a roughly constant value equal to the
Nadal limit plus the coefficient of friction on the top of the low rail
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Weinstock Criterion

Weinstock Index
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Weinstock Index
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Wheel climb - conclusions

* Nadal — provides a relationship between contact angle and friction
coefficient

* |s based upon simplified view of the slip conditions

* Wheel climb threshold matches Nadal at most practical angles of
attack, but not for low aoa.

* Weinstock rectifies that (for positive angles of attack) and includes
explicitly the effect of friction on top of low rail.

* Asafe L/V is some fraction of the (Nadal or Weinstock) threshold
value, say 60-80%.

* These are static and quasi-static derivations.
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Low rail rollover

Wide gauge, hollow wheels, poor restraint, underbalanced running, high
friction

Leading Axle - Left Rail £ Axle - Right Rail

N

L |
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Hunting

45

* FRA statistics: EATC (truck hunting) + E4TL (locomotive hunting)

— 6 per year prior to 2007
— Gondolas, tank and covered hopper
— Class 4 and 5 tracks, 40-60 mph
— 98% under dry conditions
— Empty cars mostly (7/8)
* After 2007 — none: AAR Rule 467?

e Hunting truck detectors
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Unsafe hunting )

Proceedings of the 2009 ASME Joint Rail Conference
JRC2009
March 3-5, 2009, Pueblo, Colorado, USA

JRC2009-63042
UNSAFE HUNTING OF FREIGHT RAIL CARS

Wei Huang and Yan Liu
Centre for Surface Transportation Technology
National Research Council Canada
2320 Lester Road, Ottawa, Ontario, Canada
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Unsafe Hunting

* Criteria:
— RMS lateral acceleration of car body exceeding 0.13 g sustained
— L/V greater than Nadal limit
— Wheel unloading >0.9

e Contributing factors
— Yaw damping at centre-plate/center-bowl! (esp. for loaded car)
— Truck warp stiffness

— Track quality (smoother track is more prone to hunting, but
derailment more likely on rougher track).

47
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Dynamic and Impact Loads

* Even perfect vehicle/track will have dynamic forces
(though typically within 10% of static load).

* Rail irregularities — welds, joints, switches, crushed
heads, corrugation, spalling

 Wheel irregularities — out of roundness (ovality),
polygonization (corrugation), wheel flats
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Track geometry imperfections

* Force exceptions (AAR Ch. 11)
- L/V>1.0, V/Vs<0.1

* vs Track Geometry

— IWS: poor correlation e.g. 1in 8

Simulation:

* Covered hopper

* Moderately worn truck
* 80 kph (50 mph)

e u=0.5

* Unworn AAR1B wheel
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Lateral Alignment, Peak-to-Peak (mm)
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4315 simulations at 80kph with randomly picked alignment/
surface amplitudes, wavelengths and offset
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are conservative
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Forces due to Wheel flats

_ 55-
| § = W/R contact force -
Freight cars: 4.5 - "l
Nominal wheel load: 36kips g <
Extreme values 140 kips L 47 >
L2 3.5 -
g 3-
5 251
-
g 219 et —— e
= 1.5 - Ballast force
1 E—————————————— ey,
0 20 40 60 80 100 120 140 kph
0 12 24 36 48 60 72 84 mph
: Speed
R.Dong PhD thesis, 1994
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Heavy haul example: 30 trains/d x 150cars/t x 4 axles/car = 18000 axles/day

Wheel Impact Forces

52
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Conclusions

* Matching of wheel/rail profiles
— Rolling radius difference: stability and curving

— Strong impact on stress, curving forces, stability, surface damage,
safety/derailment (with friction conditions, truck suspensions, track geometry etc.)

— Must consider both new and worn shapes (pummeling)
 Nadal formula is adequate for most wheel climb analyses
* Track Geometry and dynamic forces strongly affect safety
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