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Agenda
1. Vehicle steering, stability and curving forces
2. Wheel-Rail profile design and performance
3. VTI Derailment Mechanisms and Risk 

Assessment
4. Impact and Dynamic Loads
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VEHICLE STEERING
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The Free Wheelset - Hunting
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Equivalent Conicity from the DR plot
• British Rail derivation
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A Truck can provide Stability

Bearing

Side frame

Bolster

Damping 
and 
stiffness



11

April 2008

Leading wheelset: yaw angle
V

• Rigid Truck

Also, yaw angle due to deflection of suspension (bending and shear) 

• Self-steering
(flexible)
• Steered
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CURVING FORCES
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Flange Force

Lateral Forces (Creep) in Curves
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T = mV
Where 22 NLT 

N: Longitudinal
Creepage or Force

L: Lateral 
Creepage or 
Force

N=mV

L=mV

Friction Circle
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WHEEL-RAIL PROFILE DESIGN AND 
PERFORMANCE
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Design of Engineered Rail Profiles
• Rail design considers:

• Track curvature
• Worn wheel shapes
• Types of vehicle and speed (hunting)
• Dynamic rail rotation
• Rail hardness
• Grinding interval (profile deterioration between intervals)
• Static gage

• control contact stress 
• inhibit hunting
• minimize wear



19The NRC family of heavy haul rail templates 
(1990’s)
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Rail Profile Design Criteria
Goals are to reduce/control:

– Gauge face and TOR wear
– Rolling contact fatigue (RCF)
– Dynamic instability (hunting)
– Corrugation formation
– Wheel hollowing

And are easily or practically implemented by grinding
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Wheel/rail contact stresses

• Stress and damage depend 
on:
– wheel radius
– wheel load
– friction coefficient
– wheel/rail profiles

(contact geometry)

False Flange

Hollow wheels

Severe gauge-corner contact

High rail

Low rail
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Wheel / Rail Conformality
• closely conformal (as per 
hertzian spring)

0.1 mm (0.004”) or less

• conformal

0.1 mm to 0.4mm 

(0.004” to 0.016”)

• non-conformal

0.4 mm (0.016”) or 
larger
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Some Typical Issues Associated with Wheel/Rail Conformality 

Closely conformal profiles
Dynamic instability (hunting)
Corrugation formation by spin creepage

Conformal profiles
Low stress state W/R interface
Used for mass transit and high speed lines = 1PT conformal
(good for steering)
Heavy haul = 2PT conformal (balance contact stress steering and wear)

Non-conformal profiles
High stress state W/R interface
1PT: cracks (RCF) at GC of HR and FS of LR
2PT: high gauge face wear in curves



24Worn Wheel and Rail Profiles are Envelopes of Each 
Other

• Worn wheel is an envelope of all rail 
profiles it encounters on a particular 
route

• Worn rail is an envelope of all wheel 
profiles that pass over it
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Pummelling Analysis
• Simulation

– Measured wheel profiles
– vehicle characteristics (stiffness, wheelbase etc.)
– rail hardness (for damage evaluation)
– rail curvature, super-elevation, dynamic rail rotation etc.

• Evaluate distributions of 
– contact stress
– steering moments
– effective conicity
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A Family of Rail Profiles
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Families of Rail Profiles
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VTI DERAILMENT MECHANISMS 
AND RISK ASSESSMENT
Wheel climb
Hunting
Low rail rollover
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WHEEL CLIMB
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Wheel/Rail Contact

CPR-8”, RE141

AAR1B-NF

• W/R contact often takes place at two points 
simultaneously (some new wheels especially)
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Wheel/Rail Contact (cont’d)

• Plan view of contact ellipses on high rail for different angles of attack
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Deriving Nadal
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Nadal’s Relationship
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Slip vectors at the gage face contact

a = angle of attack 

d = wheel flange angle

b  gage face angle

d>b, a=0            

d<b, large a

d=b, moderate a
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Gilchrist and Brickle
• Nadal is not generally correct, even in steady state conditions since longitudinal 

creepage is also present at the gage-face wheel/rail contact patch
• Nadal provides a conservative threshold limit (i.e. indicates that the risk is higher 

than it actually is)
– Very conservative for small or negative angles of attack
– Though adequate for more than about 5mrad yaw.

• Considered the out of plane geometry
• Note that the most dangerous condition occurs when there is no longitudinal slip 

across the contact patch (i.e. the creep force is completely transverse, lifting the 
wheel)
– Braking the wheelset in a curve
– Independently rotating wheelsets
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Long/Lateral Slip (single wheelset, d =63.5, m=0.5, 
a/b=7.5 ) from Weinstock
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Lateral wheel/rail forces

High/outside rail
Low/inside rail

High/outside railLow/inside rail

Direction of travel

Largest portion of L on high 
wheel comes from creepage 
on the low rail
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Weinstock derailment criterion

• At incipient wheel climb, the L/V values on the flanging and non-flanging wheels 
are, for positive angles of attack, separated by a roughly constant value equal to the 
Nadal limit plus the coefficient of friction on the top of the low rail 

|L/V|flanging + |L/V|non_flanging > 
(L/VNADAL + m)

• Holds for all positive angles of attack,
• Less accurate for +ve cant deficiency
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Weinstock Criterion
Weinstock Index
m_Top of Low Rail = 0.45
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An Example
• Is lubrication a good thing?

Low Rail L/V Histogram All Trains
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Wheel climb - conclusions
• Nadal – provides a relationship between contact angle and friction 

coefficient
• Is based upon simplified view of the slip conditions
• Wheel climb threshold matches Nadal at most practical angles of 

attack, but not for low aoa. 
• Weinstock rectifies that (for positive angles of attack) and includes 

explicitly the effect of friction on top of low rail.
• A safe L/V is some fraction of the (Nadal or Weinstock) threshold 

value, say 60-80%.
• These are static and quasi-static derivations.  
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Low rail rollover
• Wide gauge, hollow wheels, poor restraint, underbalanced running, high 

friction



45

Hunting
• FRA statistics: E4TC (truck hunting) + E4TL (locomotive hunting)

– 6 per year prior to 2007
– Gondolas, tank and covered hopper
– Class 4 and 5 tracks, 40-60 mph
– 98% under dry conditions
– Empty cars mostly (7/8)

• After 2007 – none:  AAR Rule 46?
• Hunting truck detectors
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Unsafe hunting
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Unsafe Hunting
• Criteria:

– RMS lateral acceleration of car body exceeding 0.13 g sustained
– L/V greater than Nadal limit
– Wheel unloading >0.9

• Contributing factors
– Yaw damping at centre-plate/center-bowl (esp. for loaded car)
– Truck warp stiffness
– Track quality (smoother track is more prone to hunting, but 

derailment more likely on rougher track).
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Dynamic and Impact Loads
• Even perfect vehicle/track will have dynamic forces 

(though typically within 10% of static load).
• Rail irregularities – welds, joints, switches, crushed 

heads, corrugation, spalling
• Wheel irregularities – out of roundness (ovality), 

polygonization (corrugation), wheel flats 
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Track geometry imperfections
• Force exceptions (AAR Ch. 11)

– L/V>1.0, V/Vs<0.1

• vs Track Geometry
– IWS: poor correlation e.g. 1 in 8

Simulation:
• Covered hopper
• Moderately worn truck
• 80 kph (50 mph)
• m=0.5
• Unworn AAR1B wheel



50

TGIMS
• Current FRA limits 

are conservative 
with respect to 
single geometry 
errors and do not 
capture all high risk 
combinations
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Forces due to Wheel flats
Freight cars:
Nominal wheel load: 36kips
Extreme values 140 kips

0         12        24        36        48         60         72       84
Speed

kph
mph

R.Dong PhD thesis, 1994
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Conclusions
• Matching of wheel/rail profiles

– Rolling radius difference: stability and curving
– Strong impact on stress, curving forces, stability, surface damage, 

safety/derailment (with friction conditions, truck suspensions, track geometry etc.)

– Must consider both new and worn shapes (pummeling)

• Nadal formula is adequate for most wheel climb analyses
• Track Geometry and dynamic forces strongly affect safety


