
Rail Vehicle Suspensions and Components

Overview

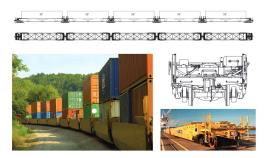
- Rail Car Types.
- Rail Car Suspensions: Why are suspensions important; reasons for suspension design choices; freight vs. passenger designs.
- Rail Car Components.

Freight Car Types

- Industry started simple: only a few car types carried everything.
- As builders and railroads looked for efficiencies, new car types were developed.

Freight Car Types

Different commodities have had specialized cars developed for them to:


- reduce damage to goods,
- speed up loading/unloading,
- lower overall costs!

Freight Car Types

https://www.steelcar.com/products/25500g-tank-car

https://www.gbrx.com/media/2352/gbx-tech-sheet-stack-5-unit-maxi-stack-v.pdf

https://www.steelcar.com/products/centerbeam

https://www.gbrx.com/media/2352/gbx-tech-sheet-stack- https://www.gbrx.com/media/1447/flat89.pdf

What is common between all these different cars:

- They operate empty and loaded.
- The car bodies all sit on top of freight trucks.

Passenger Car

Possibly even greater variety!

- Often custom or "one-off" designs, unique to a city or a route within a city.
- Urban and intercity; streetcars to complete trainsets.
- Light to heavy; low speed to very fast.

Car Types

- Light weight (LW): weight of the empty car.
 - Under 40,000 pounds (container car, tank car, box car, flat car and ...) to over 100,000 pounds (autorack).
- Gross Rail Load (GRL): maximum loaded weight.
 - 263,000 to 286,000 pounds, or lower!
 - Depends on commodity (density).
 - Example: autorack GRL of ~ 200,000 pounds.

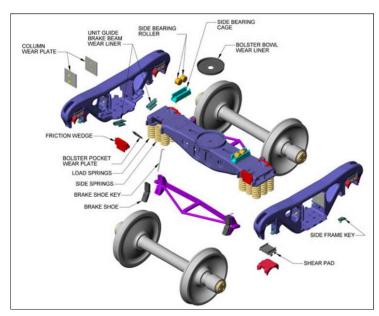
Car Types

GRL to LW ratio

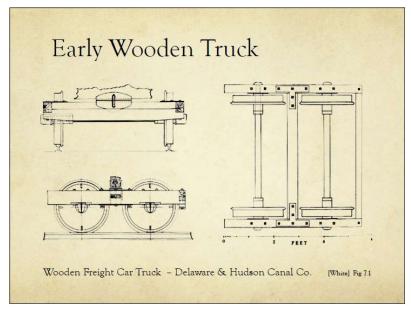
Passenger: ~1.5 to 2

• Autorack: ~ 1.8 to 2

5-pack container: ~4


Ore car: ~5.5 to 6

 How do rail car suspensions handle this difference between empty and loaded weights?



Freight Car Trucks

http://www.sctco.com/products.html

http://sld-nmra.ca/freight_car/ref_material/freight_car_trucks_long.pdf

Passenger Car Truck

https://www.mobility.siemens.com/mobility/global/SiteCollectionDocuments/en/rail-solutions/components-and-systems/bogies-catalog-en.pdf

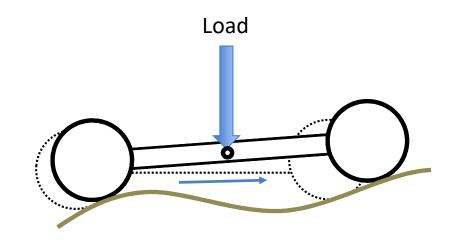
Rail Car Suspensions

Why is there a suspension?

- Load equalization: transfer the car load evenly to the rails.
- Vibration Isolation: Passenger comfort, prevent damage to goods and to the car itself.
- Control vehicle motion: Traction, braking, lateral curving forces, dynamic stability.

Load Equalization

- 1. Transfer the car load evenly to the rails.
- 2. A car with no suspension would lift wheels on even slightly uneven track, such as when entering curves.
- 3. Rail and subgrade designs place a limit on the maximum wheel load on the rail.



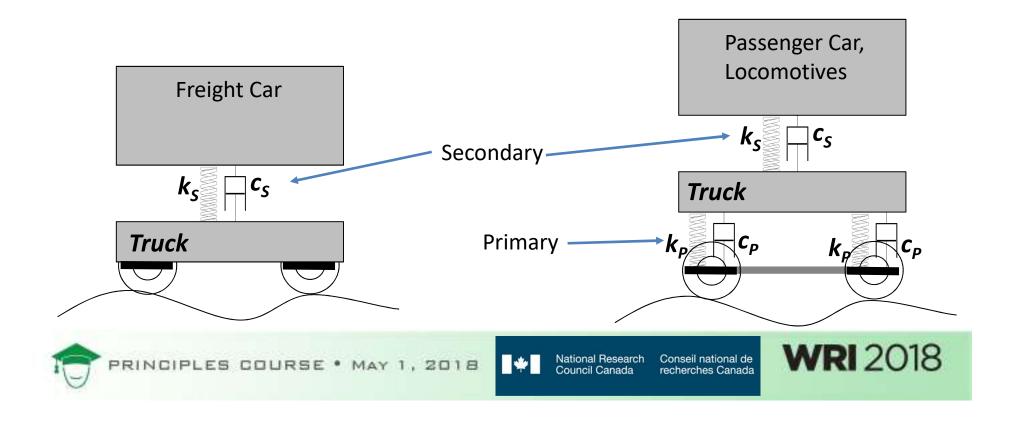
Load Equalization

 The truck balances the load between the front and rear wheels by pivoting at the bolster.

walking beam suspension

Load Equalization

- Passenger car truck frames are usually rigid frames. A
 primary and a secondary suspension aids in balancing the
 wheel loads.
- Locomotive trucks have powered axles. To maximize traction the vertical loads must be balanced, so a primary and a secondary suspension is used on freight locomotive trucks.


Primary and Secondary Suspension

- 1. Primary Suspension: A suspension at a wheel location, between a wheelset and the truck frame.
- 2. Secondary Suspension: A suspension between a car body and a truck frame.

Primary and Secondary Suspension

Primary and Secondary Suspension

No Primary Springs: "Hard" Connection

Primary springs

Secondary springs

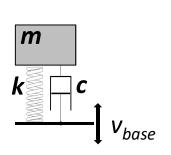
Passenger Car Truck

Secondary springs

Damper

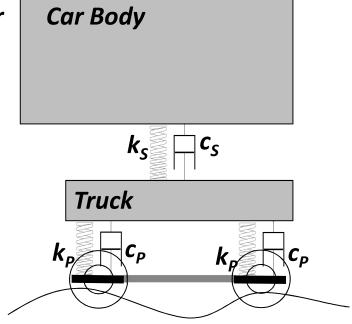
https://www.mobility.siemens.com/mobility/global/SiteCollectionDocuments/en/rail-solutions/components-and-systems/bogies-catalog-en.pdf

Vibration Isolation


- 1. As car speeds increase, vibration isolation becomes important the suspension isolates the car from the changing forces of the wheels on the rails.
- 2. The car and the suspension form a spring-mass system.
- 3. A car with no suspension would move up-down with every undulation on the track. A suspension allows the wheels to "follow" the rails.

Spring-Mass-Damper System

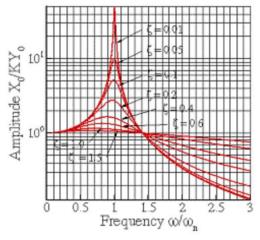
"Quarter Car Model" v_{mass} v_{base}

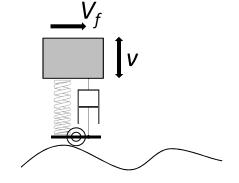


Spring-Mass-Damper System

- For rail cars
 - Main mass: car body
 - secondary suspension:
 between the car body and the truck
 - Primary Suspension:
 between the wheelset and
 the truck

"Quarter Car Model" with Primary and Secondary Suspension

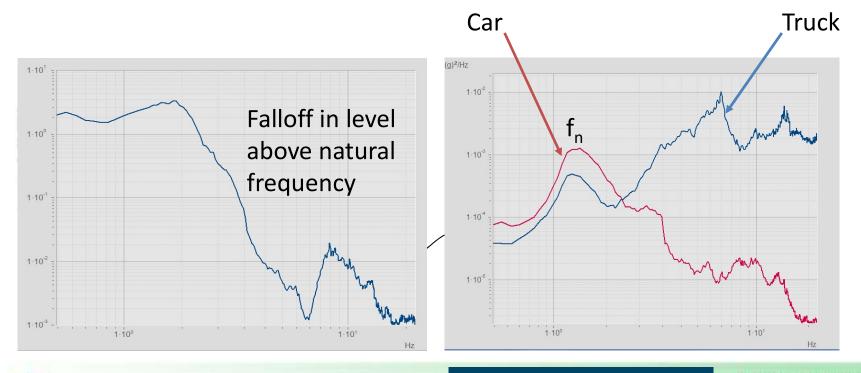



Vibration Isolation

Spring-mass-damper systems have well understood properties:

- Resonance frequency.
- Damping has an effect on the system response.

http://www.brown.edu/Departments/ Engineering/Courses/En4/Notes/vibrat ions_forced/vibrations_forced.htm


Spring-Mass-Damper System

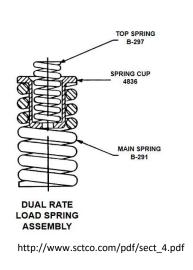
- 1. At the resonance frequency, the mass moves at a very high displacement.
 - This can be controlled with damping.
- 2. Above resonance, the mass is isolated from the vibrations applied to the spring.
- 3. Less damping = high displacement at resonance
- 4. More damping = less isolation!

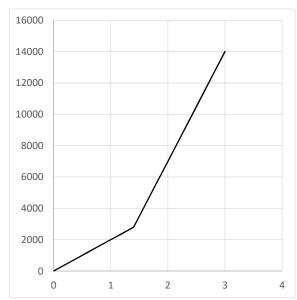
Vibration Isolation

Springs

- Freight typically use coil springs.
 Passenger; coil or air.
- Freight car "spring groups" are designed to keep the freight car suspension effective when the car is empty and loaded.
 - Concentric springs with different heights.
 - Built up in groups to achieve desired empty and loaded stiffness.
 - Keep empty and loaded resonance low enough.

DOUBLE SIDE SPRING DESIGN


	S-2-A	S-2-B	S-2-C
SPRING TRAVEL	2 1/2"	3 1/16"	3 11/16"
FREE HEIGHT (CENTER GROUP)	9 1/16"	9 5/8"	10 1/4" (OUTER COIL)
SOLID HEIGHT	6 9/16"	6 9/16"	6 9/16"
6" X 11" BEARING SIZE	00	000	000
220,000 LBS. MAX RAIL LOAD	5 OUTERS D-3 4 INNERS D-3 2 OUTER SIDE B-421 2 INNER SIDE B-422	7 OUTERS D-4 2 INNERS D-4 2 OUTER SIDE B-432 2 INNER SIDE B-433	7 OUTERS D-5 3 INNERS D-5 2 OUTER SIDE B-432 2 INNER SIDE B-433
*WEIGHT PER CAR SET 4 - GROUP (LBS)	549	622	639
SOLID CAPACITY (LBS)	83,865	84,124	83,836
6 1/2" X 12" BEARING SIZE 263,000 LBS. MAX RAIL LOAD	7 OUTERS D-3 2 INNERS D-3 2 OUTER SIDE B-421 2 INNERS SIDE B-422	000 000 700 D4 6 INNERS D4 2 OUTER SIDE B432 2 INNERS SIDE B433	O O O O O O O O O O O O O O O O O O O
*WEIGHT PER CAR SET 4 - GROUP (LBS)	657	746	732
SOLID CAPACITY (LBS)	96,709	97,856	96,448
6 1/2" X 12" BEARING SIZE 286,000 LBS. MAX RAIL LOAD			7 OUTERS D-5 7 INNERS D-6 2 INNER INNER D-6-A 2 SIDE OUTER B-432 2 SIDE INNER B-433
*WEIGHT PER CAR SET 4 - GROUP (LBS)			797
SOLID CAPACITY (LBS)			107,129
7" X 12" BEARING SIZE 315,000 LBS. MAX RAIL LOAD	8 OUTERS D-3 6 INNERS D-3 2 OUTER SIDE B-421 2 INNER SIDE B-422	000 0000 000 8 OUTERS D4 8 INNERS D5 2 OUTER SIDE B432 2 INNER SIDE B434	8 OUTERS D-5 8 INNERS D-6 2 OUTER SIDE B-432 2 INNER SIDE B-434
*WEIGHT PER CAR SET 4 - GROUP (LBS)	866	888-LG	904
SOLID CAPACITY (LBS)	119,000	113,080	116,336



Springs

https://www.railway-technology.com/contractors/bogies/amsted-rail/

Piece-wise-linear spring rate: lower spring rate when empty, higher spring rate when loaded.

Air Springs

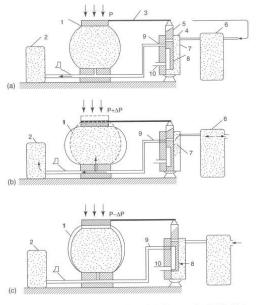
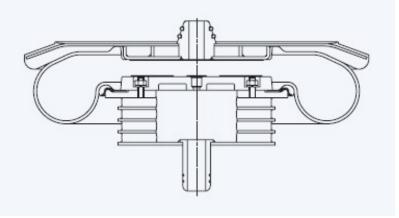


FIGURE 3.11 Schematic showing the operation of a typical air suspension: (a) Equilibrium position; (b) Upstroke; (c) Downstroke.

Handbook of Railway Vehicle Dynamics. Iwnicki, 2006, CRC Press


- Contained gas can act as a spring, but with interesting properties!
- The stiffness is a function of the volume of contained gas, and the change in volume
- Often used on passenger and light rail cars: empty and loaded stiffness can be adjusted

Air Springs

https://www.bridgestoneindustrial.eu/downloads/Air-Spring-EN.pdf

Air Springs

- Air Springs have some interesting properties:
 - Pre-loading the system allows for constant ride height and load leveling.
 - Suspension stations can be connected and interact:
 - Automated levelling; roll in curves.
 - Reduced pitch and roll response.

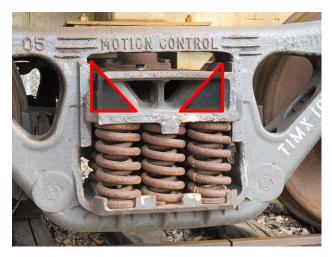
Damping

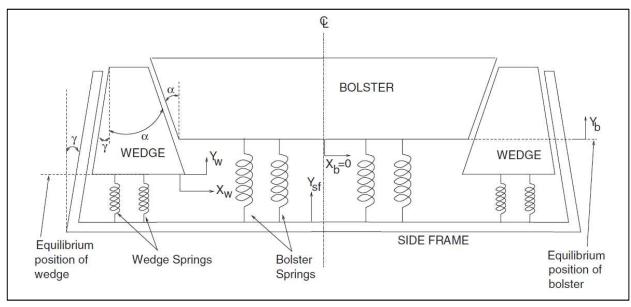
- What is "Damping"?
 - Energy loss in the system, through friction.
 - In an automobile, typically an oil-filled "shock absorber"
 - Pushing the oil through a hole involves friction
 - But any form of friction works.

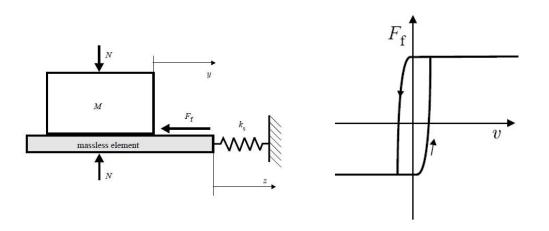
Damping

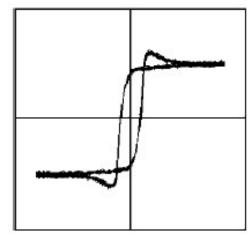
- Freight cars:
 - Almost universally use surface friction for damping
 - "Friction Wedges" in the truck design.
- Passenger cars:
 - Hydraulic is often used.

- Main form of damping in freight cars.
 - Vertical, but also lateral.
- Wedges are also key in keeping the truck square and stiff.
 - a requirement for high speed performance and better wheel life.







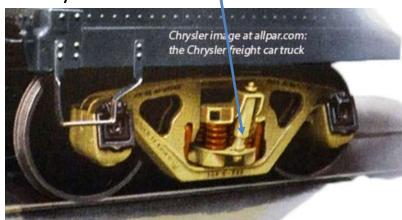

Experimental study of stick-slip dynamics in a friction wedge damper. N.K. Chandiramani, K. Srinivasan, J. Nagendra. Journal of Sound and Vibration 291 (2006) 1–18

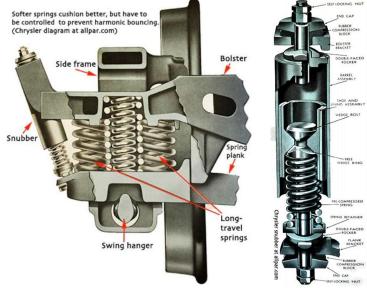
Phil. Trans. R. Soc. A (2008) 366, 747–765 doi:10.1098/rsta.2007.2125 Published online 18 October 2007

Hydraulic Dampers

- Force is proportional to velocity.
- Design details can be adjusted to result in non-linear response to velocity, "blow off" force limits, and other design features.

Damper

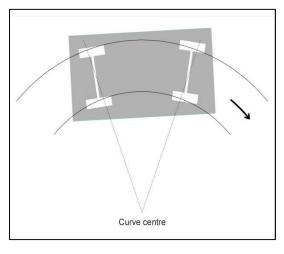

Conseil national de recherches Canada


Friction Dampers

Chrysler truck design (1950s) – not current but a very interesting design!

External "friction snubber" is friction based, not hydraulic.

https://www.allpar.com/corporate/railroads.html

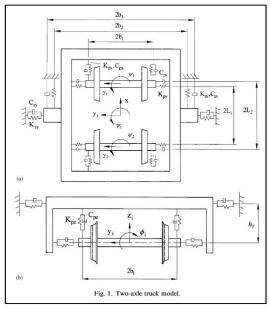

https://www.allpar.com/corporate/railroads.html

Curving

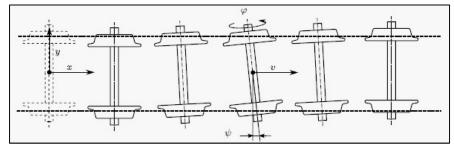
http://the-contact-patch.com/book/rail/r0415-curving

- How do you get solid axle wheelsets, mounted to a truck frame, to go around a curve?
- The truck frame must allow some relative motion of the wheelsets, either with controlled stiffness, or clearances.
- Side effect of being able to negotiate curves is that lateral stability is affected.
- At high speeds the truck may begin "hunting".

- Systems often have regions of operation that are 'unstable' – e.g. the wobbly shopping cart wheel.
- Aircraft, motorcycles, cars: all have design elements to maintain stability.
- Rail cars have the same limitations with stability and speed.

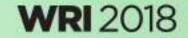

- The hunting problem was so important, that in the 1950s a competition was held to find a solution.
 - de Possel, Boutefoy, and Matsudaira (1960) described and analyzed the problem.
 - similarities to aero-elasticity problems in high speed aircraft.

By ナダテ (Nadate) - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=5161741



Journal of Sound and Vibration 282 (2005) 881–898, Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks. Sen-Yung Lee, Yung-Chang Cheng

 Solution: Control lateral and longitudinal stiffness of the axle-truck system => control hunting.



Multibody System Dynamics, July 2015, Volume 34, Issue 3, pp 259–274, Kinematic oscillations of railway wheelsets. Mate Antali, Gabor Stepan, S. John Hogan

Conseil national de recherches Canada

- Passenger Car Trucks: Primary suspension elements are designed with controlled lateral and longitudinal stiffness values, to allow for steering in curves but also to control hunting at high speeds.
- Lateral dampers and car body-bolster side bearings may also be incorporated.

- Freight Car Trucks:
 - Wedge designs to improve warp stiffness.
 - Constant-contact side bearings to provide damping.
 - Bearing adapter inserts: elastomeric pads to control longitudinal and lateral stiffness, improve curving performance.
 - Special truck designs.

Constant contact side bearing

https://www.amstedrail.com /sites/default/files/salescollateral-files/fieldinspection-pocket-guide.pdf

Suspensions for Freight Cars

- Each car type will have a truck design, spring group, friction wedge design, and side bearing each selected to be optimized for that particular car.
 - Optimal curving performance; low drag, low wheel wear.
 - Prevent hunting when empty (and loaded).
 - Traverse demanding track conditions, switches, crossovers,
 - Cost effective to operate and maintain from a system-wide standpoint.

Suspensions for Passenger Cars

- Each passenger car design will have a truck design with primary and secondary suspension spring and dampers selected to be optimized for that particular car.
 - Optimal curving performance; low drag, low wheel wear.
 - Prevent hunting at all operational speeds.
 - Isolate passengers from vibrations.
 - Traverse demanding track conditions, switches, crossovers.

Thank You

