

PRINCIPLES CDURSE• MAY 1, 2DI日
WRI 2018

Individual Geometry Topics

- Gage
- Curves and Curve Alignment
- Superelevation
- Crosslevel Variance and Deviation
- Vertical Profile
- Runoff from a Raise

Gage, Alignment, Profile, and Crosslevel Variations

PRINDIPLES CDURSE • MAY 1, 2D1日

Gage and Alignment Variations

PRINDIPLES CDURSE • MAY 1, ZDI日

Crosslevel and Alignment Variations

PRINCIPLES CIURSE MAY 1, 2ロ1日

Surface and Profile Deviations

PRINCIPLES CDURSE • MAY 1, 2ロ1日

When unloaded track is measured to determine compliance with requirements of this part, the amount of rail movement, if any, that occurs while the track is loaded must be added to the measurements of the unloaded track.

PRINCIPLES CDURSE• MAY 1, 201日

For North American Freight Operations ${ }^{9}$

CLASSES OF TRACK

	OPERATING SPEEDS (MPH)			
CLASS	1FREIGHT		2. PASSENGER	
	FROM	TO	FROM	TO
1	1	10	1	15
2	11	25	16	30
3	26	40	31	60
4	41	60	61	80
5	61	80	81	90

§ 213.53 Gage.

(a) Gage is measured between the heads of the rails at right-angles to the rails in a plane five-eighths of an inch below the top of the rail head.
(b) Gage shall be within the limits prescribed in the following table -

Class of track	The gage must be at least-	But not more than-
Excepted track.	N/A	$4^{\prime} 10^{1 / 4}{ }^{\prime \prime}$
Class 1 track	$4^{18} 8$	4'10"
Class 2 and 3 track	4'8"	$4^{\prime} 9^{3 / 4}{ }^{\prime \prime}$
Class 4 and 5 track	$4^{\prime} 8{ }^{\prime \prime}$	$4^{\prime} 9^{1 / 2 "}$

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Gage Deviations

PRINCIPLES CDURSE • MAY 1, 2ロ1日

Gage - Distance between the rail heads

 measured $5 / 8$ " below top of rail

Dynamic Gage Widening

PRINCIPLES CIURSE • MAY 1, 2ロ1日

PRINCIPLES CDURSE * MAY 1, 2D1日

Gage 56.5"		
Base Gage		
100	Base Gage Decimal(in.)	Base Gage Fraction(in.)
115	54.16	$545 / 32$
119	53.96	$5331 / 32$
132	53.91	$5329 / 32$
133	53.69	$533 / 4$
136	53.72	$5311 / 16$
141	53.72	$5323 / 32$

PRINCIPLES CDURSE * MAY 1, 2ロ1日

Measuring gage 5/8" below head of rail

WOLF
WRI 2018
Railway Consulting

Subpart C - Track Geometry §213.53 Gage

Particular attention should be given to track gage in turnouts or locations where high lateral train forces are expected or evident.
These areas include the curved closure rails, the toe and heel of frogs, the curved track behind the frog and several feet ahead of the switch points.

PRINDIPLES CDURSE• MAY 1, 2DI日

Checking Gage in a Turnout at Multiple locations

PRINCIPLES CDURSE• MAY 1, 2ロ1日

PRINDIPLES CDURSE • MAY 1, 2DIE

213.143 Guard Check and Face Gage

The guard check and guard face gages in frogs shall be within the limits prescribed by the following table:

Class of Track	Guard Check gage may not be less than	Guard Face gage may not be more than
Class 1	$4^{\prime} 61 / 8^{\prime \prime}$	$4^{\prime} 5 \frac{1 / 4 \prime \prime}{\prime \prime}$
Class 2	$4^{\prime} 6 \frac{1 / 4^{\prime \prime}}{}$	$4^{\prime} 51 / 8^{\prime \prime}$
Class $3 \& 4$	$4^{\prime} 63 / 8^{\prime \prime}$	$4^{\prime} 51 / 8^{\prime \prime}$
Class 5	$4^{\prime} 6 \frac{1 / 2 \prime}{2 \prime \prime}$	$4^{\prime} 5 \prime$

PRINDIPLES CDURSE• MAY 1, 2D1日

PRINCIPLES CDURSE • MAY 1, 2ロ1日

WOLF
WRI 2018
Railway Consulting

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Issues with Gage

- Tight Gage
- Can induce hunting at lower speed ranges
- Wears wheels and rail at accelerated rate
- Wide Gage
- Indication of weak ties and fasteners
- Can allow greater wheelset angles of attack
- Reduces safety margin for rail roll and wheel drop in

Curves and Curve Geometry

A high percentage of all derailments occur on curved track, including turnouts! It is important to understand curve geometry and how it affects car performance.

Curves and Curve Geometry

2 characteristics of curves

Elevation

PRINDIPLES CDURSE • MAY 1, 2D1日

Alignment

Definition of a Curve

A curve is defined as a path along the edge of a circular arc defined by a circle of with a given radius

PRINCIPLES CIURSE • MAY 1, 201日

Railroad Definition of a Curve

Degree of curve is the angle ϕ subtended by a 100 ft . chord

Estimating degree of curvature

Degree of curve can be estimated by using a 62 ft . chord and measuring the mid-ordinate offset

PRINDIPLES CDURSE • MAY 1, 2ロ1日

Stringlining using 62 ft . Chord

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Radius of a Curve

Degree of Curve \& Radius

Degree of Curve 1	Mid-Ordinate of a 62' Chord	Radius of Curve
2	$1^{\prime \prime}$	5730^{\prime}
3	$2^{\prime \prime}$	2865^{\prime}
5	$3^{\prime \prime}$	1910^{\prime}
10	$5^{\prime \prime}$	1146
2	$10^{\prime \prime}$	573^{\prime}

Full Body of Curve
 WRI 2018

Most Likely Derailing Wheel in Entrance Spiral

PRINCIPLES CDURSE• MAY 1, 201日

Low Rail

Loss of vertical load account car twist at outer rail, lead truck, first axle. This is most frequently derailing wheel. Also, lateral forces Most Likely Derailing Wheel in Exit Spiral are highest on lead truck.

WOLF WRI 2018

PRINCIPLES CDURSE • MAY 1, 2ロ1日

Summary of Curve Derailment Issues

- Most frequent type of derailment in body of curve is rail rollover; wheel climb due to crosslevel and alignment defects
- Most frequent type of derailment in entry spiral is wheel climb of wheel on trail truck, third axle, on high rail.
- Most frequent type of derailment in exit spiral is wheel climb of wheel on lead truck, first axle, on high rail.
- Insufficient tangent between reversing curves can cause trucks to bind, resulting in wheel climb or gage spreading.

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Alignment Deviations

\rightarrow
PRINGIPLES CDURSE•MAY 1, 2ロ1日

WRI 2018
Railway Consulting
(a) Except as provided in paragraph (b) of this section, alinement may not deviate from uniformity more than the amount prescribed in the following table:

Class of Track	Tangent Track	Curved Track	
	The deviation of the mid-offset from a 62-foot line [1] may not be more than --	The deviation of the midordinate from a 31 -foot chord [2] may not be more than --	The deviation of the mid-ordinate from a 62-foot chord [2] may not be more than --
1	$5^{\prime \prime}$	N / A^{3}	$5^{\prime \prime}$
2	$3{ }^{\prime \prime}$	N / A^{3}	$3 "$
3	$13 / 4 "$	11/4"	13/4"
4	$11 / 2^{\prime \prime}$	1 "	$11 / 2^{\prime \prime}$
5	3/4"	$1 / 2{ }^{\prime \prime}$	\%"
[1] The en inch below rail must [2] The en an inch bel $[3] N / A-N$	s of the line must be at points on the top of the railhead. Either rail used for the full length of that ta of the chord must be at points w the top of the railhead. t Applicable	the gage side of the line rail may be used as the line rail, ngential segment of track. the gage side of the outer	five-eights of an however, the same rail, five-eighths of

PRINCIPLES CDURSE • MAY 1, 2ロ1日

In Classes 3 through 5, both the 31 -foot and 62 -foot chords must be used, and corresponding measurements must be calculated to determine compliance with the required alinement thresholds. If alinement defects are found using both the 31 -foot and the 62 -foot chord, the inspector should report the item as one defect and note that the defect does not comply with the requirements for the second chord, e.g., " $13 / 4$ inches alinement deviation on curved track for 62 -foot chord. Note: $13 / 8$ inches alinement deviation for 31 -foot chord at this location."

PRINCIPLES CDURSE * MAY 1, 2ロ1日

Railway Consulting

The chord (string) is stretched and held tight between two points on the rail, $5 / 8$ inch below the top running surface of the rail. Measure the MCO between the rail and the string with a graduated ruler, using blocks to compensate for shallow curvature and special trackwork, if necessary.

PRINCIPLES CDURSE• MAY 1, 2D1日

PRINCIPLES CDURSE • MAY 1, 2ロ1日 WRI 2018

4" = 4 Degree Curve

WRI 2018

PRINCIPLES CDURSE• MAY 1, 201日

WRI 2018

PRINCIPLES CIURSE • MAY 1, 2ロ1日
WRI 2018

Using Spring clamps to Stringline when no help available

WOLF

FRA Alignment Table

§213.55 Alinement.

Alinement may not deviate from uniformity more than the amount prescribed in the following table:

${ }^{1}$ The ends of the line shall be at points on the gage side of the line rail, five-eighths of an inch below the top of the raithead. Either rail may be used as the line rail, however, the same rail shall be used for the full length of that tangential segment of track.
${ }^{2}$ The ends of the chord shall be at points on the gage side of the outer sail, five-eighths of an inch below the top of the railhead.
${ }^{3} \mathrm{~N} / \mathrm{A}-$ Not Applicable.

$$
\begin{aligned}
& \text { To Establish Uniformity, measure out } \\
& \text { Nine 31' stations, } 4 \text { ahead of and } 4 \text { behind the } \\
& \text { Station of concern. Measure the Mid-chord offset } \\
& \text { Of each station using a 62' chord. Average the nine } \\
& \text { Stations and this determines Uniformity. The difference } \\
& \text { Between the MCO at the station of concern, and the" } \\
& \text { Average uniformity is the "deviation from Uniformity". } \\
& \text { Determining compliance with FRA Alignment Standard } \\
& \text { using } 9 \text { point averaging method }
\end{aligned}
$$

A 31' chord may pick up short wavelength deviations

62' chord may not pick up short wavelength deviations

Why use a 31 ft . chord

 in certain situations?1. Short wavelength deviations
2. Higher degree curves, easier to measure
3. Must use 31' chord for Class 3-5
4. Easier to measure in high winds

WOLF
WRI 2018

(a) The maximum elevation of the outside rail of a curve may not be more than 8 inches on track Classes 1 and 2, and 7 inches on track Classes 3 through 5. The outside rail of a curve may not be lower than the inside rail by design, except when engineered to address specific track or operating conditions; the limits in § 213.63
apply in all cases. Paragraph (a) does not imply that more than $\mathbf{6}$ inches of superelevation is recommended in a curve; rather the paragraph limits the amount of crosslevel in a curve to control the unloading of the wheels on the high rail, especially at low speeds.

PRINDIPLES CDURSE • MAY 1, 2DI日

§ 213.57 Curves; elevation and speed limitations.

(b) The maximum allowable posted timetable operating speed for each curve is determined by the following formula-

$$
V_{\max }=\sqrt{\frac{E_{a}+E_{u}}{0.0007 D}}
$$

$\mathrm{V}_{\max }=$ Maximum allowable posted timetable operating speed (m.p.h.).
$\mathrm{E}_{\mathrm{a}}=$ Actual elevation of the outside rail (inches). ${ }^{1}$
${ }^{1}$ Actual elevation, E_{a}, for each 155 -foot track segment in the body of the curve is determined by averaging the elevation for 11 points through the segment at 15.5 -foot spacing. If the curve length is less than 155 feet, the points are averaged through the full length of the body of the curve.
$\mathrm{E}_{\mathrm{u}}=$ Qualified cant deficiency ${ }^{2}$ (inches) of the vehicle type.
${ }^{2}$ If the actual elevation, E_{a}, and degree of curvature, D, change as a result of track degradation, then the actual cant deficiency for the maximum allowable posted timetable operating speed, $\mathrm{V}_{\text {max }}$, may be greater than the qualified cant deficiency, E_{u}. This actual cant deficiency for each curve may not exceed the qualified cant deficiency, E_{u}, plus 1 inch.
$D=$ Degree of curvature (degrees). ${ }^{3}$
${ }^{3}$ Degree of curvature, D , is determined by averaging the degree of curvature over the same track segment as the elevation.

PRINCIPLES CIURSE • MAY 1, 2ロ1日
§ 213.57 Curves; elevation and speed limitations.
$E_{a}=$ Actual elevation of the outside rail (inches). ${ }^{1}$
${ }^{1}$ Actual elevation, E_{a}, for each 155 -foot track segment in the body of the curve is determined by averaging the elevation for 11 points through the segment at 15.5 -foot spacing. If the curve length is less than 155 feet, the points are averaged through the full length of the body of the curve.

Determining compliance with FRA Elevation Standard using 11 point averaging method

WRI 2018
§ 213.57 Curves; elevation and speed limitations.
(c) All vehicles are considered qualified for operating on track with a cant deficiency, E_{u}, not exceeding 3 inches. Table 1 of appendix A to this part is a table of speeds computed in accordance with the formula in paragraph (b) of this section, when E_{u} equals 3 inches, for various elevations and degrees of curvature.
§ 213.57 Curves; elevation and speed limitations.

Reverse Elevation

PRINDIPLES CDURSE• MAY 1, 2D1日

Superelevation in a curve

Normally, between 0.0 to 6.0 inches of elevation is added to outer rail to counterbalance effects of centrifugal forces based on normal train speeds.

A balanced (equilibrium) condition implies the vertical forces on each rail are equal.
Figure 8 illustrates the three types of balance conditions.
4° Curve - $5^{\prime \prime}$ Superelevation

WOLF
WRI 2018

At equilibrium, There are equal vertical weights on both high and low rail.

Eq. Elevation $=.0007(\mathrm{D})\left(\mathrm{V}^{2}\right)$
For 5 degree curve; 30 MPH
Eq. El. = . $0007(5)\left(30^{2}\right)$
Eq. El. = . 0007 (5) (900)
Eq. El. ~ 3.00"
$1^{\prime \prime}$ Unbalance $=3.00-1.00=2.00 "$

To determine Equilibrium Speed for Curve

To determine FRA Maximum Speed for Curve

Drop in curve elevation of roughly $1^{\prime \prime}$ could affect maximum

allowable train speed in curve.

Typical Scenarios to Watch for:

1) Elevation for once a day Amtrak/VIA/Commuter
2) Elevations on ruling grades
3) Elevations close to speed restrictions
For a 2 Degree Curve: \qquad
Amtrak $79 \mathrm{MPH}=6$ '3E
Freight $50 \mathrm{MPH}=21 / 2, \mathrm{SE}$

PRINDIPLES CDURSE • MAY 1, 2D1日

Elevation vs. Ruling Grade

PRINCIPLES CDURSE • MAY 1, 201日

Elevations Close to Speed Restrictions

PRINCIPLES CDURSE • MAY 1, 2ロ1日

Optimized Superelevation

An amount of superelevation that will minimize centrifugal force influence for a predominance of train tonnage for Normal operating speeds.

The Key Question...

What speed do you use to adjust superelevation?

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Correct Superelevation for Curve \& Velocity

$$
\text { EL EQ. = } 2.4 \text { " }
$$

Number of trains

WOLF
WRI 2018

Correct Superelevation for Curve \& Velocity

EL EQ. $=2.4^{\prime \prime} \Rightarrow 1^{\prime \prime}$ Unbalance $2.4^{\prime \prime}=1.0 "=1.4^{\prime \prime}$

PRINCIPLES CIURSE • MAY 1, 201日
WRI 2018

Correct Superelevation for Average Train Speed on track with 30 MPH Timetable Speed
$E L=.00067(4)(23 \times 23)$
ELEQ. = 1.4 "

Railroad Practice

- Because not all trains make timetable speed, many railroads underbalance curves $1^{\prime \prime}$ to $2^{\prime \prime}$ depending on the statistical spread of train speeds.
- If you consistently run 0-5 MPH under timetable speed, then ~1" underbalance may be appropriate.
- If you consistently run 5-10 MPH under timetable speed, then ~1.5" underbalance may be appropriate.

Superelevation Chart (typical)

	Elevation of outer rail (inches)												
	0	1/2	1	11/2	2	21/2	3	$31 / 2$	4	41/2	5	$51 / 2$	6
Degree of curvature					ximum	llowa	ope	ating sp	(m				
$0^{\circ} 30^{\prime}$	93	100	107	113	120	125	131	136	141	146	151	156	160
$0^{\circ} 40^{\prime}$	80	87	93	98	104	109	113	118	122	127	131	135	139
$0^{\circ} 50^{\prime}$	72	77	83	88	93	97	101	106	110	113	117	121	124
$1^{\circ} 00^{\prime}$	65	71	76	80	85	89	93	96	100	104	107	110	113
$1^{\circ} 15^{\prime}$	59	63	68	72	76	79	83	86	89	93	96	99	101
$1^{\circ} 30^{\prime}$	53	58	62	65	69	72	76	79	82	85	87	90	93
$1^{\circ} 45^{\prime}$	49	53	57	61	64	67	70	73	76	78	81	83	86
$2^{\circ} 00^{\prime}$	46	50	53	57	60	63	65	68	71	73	76	78	80
$2^{\circ} 15^{\prime}$	44	47	50	53	56	59	62	64	67	69	71	73	76
$2^{\circ} 30^{\prime}$	41	45	48	51	53	56	59	61	63	65	68	70	72
$2^{\circ} 45^{\prime}$	39	43	46	48	51	53	56	58	60	62	64	66	68
$3^{\circ} 00^{\prime}$	38	41	44	46	49	51	53	56	58	60	62	64	65
$3^{\circ} 15^{\prime}$	36	39	42	44	47	49	51	53	55	57	59	61	63
$3^{\circ} 30^{\prime}$	35	38	40	43	45	47	49	52	53	55	57	59	61
$3^{\circ} 45^{\prime}$	34	37	39	41	44	46	48	50	52	53	55	57	59
$4^{\circ} 00^{\prime}$	33	35	38	40	42	44	46	48	50	52	53	55	57
$4^{\circ} 30^{\prime}$	31	33	36	38	40	42	44	45	47	49	50	52	53
$5^{\circ} 00^{\prime}$	29	32	34	36	38	40	41	43	45	46	48	49	51
$5^{\circ} 30^{\prime}$	28	30	32	34	36	38	39	41	43	44	46	47	48
$6^{\circ} 00^{\prime}$	27	29	31	33	35	36	38	39	41	42	44	45	46
$6^{\circ} 30^{\prime}$	26	28	30	31	33	35	36	38	39	41	42	43	44
$7^{\circ} 00^{\prime}$	25	27	29	30	32	34	35	36	38	39	40	42	43
$8^{\circ} 00^{\prime}$	23	25	27	28	30	31	33	34	35	37	38	39	40
$9^{\circ} 00^{\prime}$	22	24	25	27	28	30	31	32	33	35	36	37	38
$10^{\circ} 00^{\prime}$	21	22	24	25	27	28	29	30	32	33	34	35	36
$11^{\circ} 00^{\prime}$	20	21	23	24	25	27	28	29	30	31	32	33	34
$12^{\circ} 00^{\prime}$	19	20	22	23	24	26	27	28	29	30	31	32	33

Appendix A to Part 213-Maximum
Allowable Curving Speeds This appendix contains four tables identifying maximum allowing curving speeds based on $3,4,5$, and 6 inches of unbalance (cant
deficiency), respectively. Table 1-Three Inches Unbalance

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62-foot chord may not be more than	3	$23 / 4$	$21 / 4$	2	11/4
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	13/4	$11 / 4$	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{* 12}$	3	$21 / 4$	2	$13 / 4$	$11 / 2$
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than	2	13/4	$11 / 4$	1	3/4

${ }^{1}$ Except as limited by § 213.57(a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than 11/2 inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 11/4 inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINCIPLES CDURSE * MAY 1, 2ロ1日
WRI 2018
Railway Consulting

Vertical Profile

PRINDIPLES CDURSE• MAY 1, 2DI日
WRI 2018

PRINCIPLES CDURSE * MAY 1, 2ロ1日

Curve Superelevation and Crosslevel

PRINCIPLES CIURSE • MAY 1, 201日

2 Key Words Used in the FRA Regulations

1. Variation or Difference
2. Deviation

They sound similar, but have different; yet, important, meanings.

Railway Consulting

§ 213.13 Measuring track not under load.

When unloaded track is measured to determine compliance with requirements of this part, the amount of rail movement, if any, that occurs while the track is loaded must be added to the measurements of the unloaded track.

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62 -foot chord may not be more than	3	$23 / 4$	$21 / 4$	2	$11 / 4$
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	$13 / 4$	$11 / 4$	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{* 12}$	3	$21 / 4$	2	$13 / 4$	$11 / 2$

*Where determined by engineering decision prior to June 22,1998 , due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than

PRINCIPLES CDURSE • MAY 1, 2ロ1日
WRI 2018
Railway Consulting

Crosslevel Variations

 measurements less than 62' apart

PRINDIPLES CDURSE• MAY 1, 2D1日

> Crosslevel Variance over any two points less than 62 ft . apart.
> $3^{\prime \prime}-13 / 8^{\prime \prime}=15 / 8^{\prime \prime}$
Oo 2

PRINCIPLES CDURSE • MAY 1, 2ロ1日

Crosslevel Variations

Crosslevel Variance $11 / 2^{\prime \prime}$ over 62 ft .

PRINCIPLES CDURSE • MAY 1, 2D1日
WRI 2018

CROSSLEVEL VARIATIONS ON TANGENTS \& CURVES

VARIATION: $11 / 2^{\prime \prime}-1 / 2^{\circ}=1^{\circ}$ TRACK IS CLASS 5

Difference in Crosslevel between any two points less than 62 ft . apart may not be more than...

1	2	3	4	5
$3^{\prime \prime}$	$21 / 4$	$2^{\prime \prime}$	$13 / 4 \pi$	$1 \frac{1 / 2}{" \pi}$

Track Class
Difference

PRINCIPLES CDURSE • MAY 1, 2ロ1日

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62 -foot chord may not be more than	3	$23 / 4$	$21 / 4$	2	$11 / 4$
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	$13 / 4$	11/4	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{* 12}$	3	21/4	2	$13 / 4$	$11 / 2$
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than	2	13/4	$11 / 4$	1	3/4

${ }^{1}$ Except as limited by § 213.57(a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than $11 / 2$ inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 11/4 inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINCIPLES CDURSE * MAY 1, 2D1日

Crosslevel Deviations

Deviation from Zero Crosslevel at any point on tangent, or reverse crosslevel in curves may not be more than

	1	2	3	4	5	lass
	$3^{\prime \prime}$	$2^{\prime \prime}$	$13 / 4{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$		eviation

Wheel Unloading/Lift due to Crosslevel Variation
Between rear and front trucks

PRINCIPLES CIURSE • MAY 1, 2ロ1日

$\stackrel{y}{-}$
PRINCIPLES CIURSE • MAY 1, 2ロ1日

WOLF
WRI 2018

MEASURING CROSSLEVEL NOT UNDER LOAD

WOLF WRI 2018

Railway Consulting

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the
following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62 -foot chord may not be more than	3	23/4	$21 / 4$	2	11/4
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	$13 / 4$	$11 / 4$	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{* 12}$	3	21/4	2	$13 / 4$	11/2
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than	2	13/4	$11 / 4$	1	3/4

${ }^{1}$ Except as limited by $\S 213.57$ (a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than $11 / 2$ inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 11/4 inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINCIPLES CDURSE * MAY 1, 2ロ1日

WRI 2018

$\underset{\theta}{B}$
PRINCIPLES CDURSE• MAY 1, 201日

WRI 2018

PRINCIPLES CDURSE• MAY 1, 201日

FRA - Harmonic Rock-Off II

In this case, Deficient Track Crosslevel, could be considered a potential Primary Derailment Cause.

${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 1-1/4 inches in all of six consecutive pairs of joints, as created by 7 low joints. Track with joints staggered less than 10 feet shall not be considered as having staggered joints. Joints within the 7 low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.
(Footnote 2 is applicable September 21, 1999.)

PRINDIPLES CDURSE•MAY 1, 2ロ1日

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62-foot chord may not be more than	3	$23 / 4$	$21 / 4$	2	$11 / 4$
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	$13 / 4$	$11 / 4$	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than	3	$21 / 4$	2	$13 / 4$	$11 / 2$
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than	2	$13 / 4$	$11 / 4$	1	$3 / 4$

${ }^{1}$ Except as limited by § 213.57(a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than 11/2 inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 11/4 inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINDIPLES CDURSE • MAY 1, 2D1日

VARIATION IN CROSSLEVEL ON SPIRALS

Class 5 Spiral - PTS to PSC

Station (31 ft.)	Design Elevation 1	Level Board Reaaing	Elevation Variation
2	$1 / 2^{\prime \prime}$	0	None Exceed $3 / 4^{\prime \prime \prime}$

PRINDIPLES CDURSE•MAY 1, 2D1日
WRI 2018

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

Track surface (inches)	Class of track				
	1	2	3	4	5
The runoff in any 31 feet of rail at the end of a raise may not be more than	$31 / 2$	3	2	$11 / 2$	1
The deviation from uniform profile on either rail at the mid-ordinate of a 62 -foot chord may not be more than	3	$23 / 4$	$21 / 4$	2	$11 / 4$
The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than	3	2	13/4	11/4	1
The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{* 12}$	3	$21 / 4$	2	$13 / 4$	$11 / 2$
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than	2	13/4	$11 / 4$	1	3/4

${ }^{1}$ Except as limited by § 213.57(a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than 11/2 inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed 11/4 inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINCIPLES CDURSE• MAY 1, 2D1日

Vertical Profile Deviations

> Vertical Bounce Derailments are most often due to combinations of vertical track profile variations acting in concert with vehicles possessing poor vertical damping characteristics

WOLF
WRI 2018
Railway Consulting

Vertical profile deviation caused by poor subgrade

Stretch 62 ft. chord/string; measure vertical offset at center of chord

DEVIATION FROM UNIFORM PROFILE

WRI 2018

§ 213.63 Track surface.

(a) Except as provided in paragraph (b) of this section, each track owner shall maintain the surface of its track within the limits prescribed in the following table:

The deviation from uniform profile on either rail at the mid-ordinate of a 62-foot chord may not be more than

The deviation from zero crosslevel at any point on tangent or reverse crosslevel elevation on curves may not be more than

The difference in crosslevel between any two points less than 62 feet apart may not be more than ${ }^{*}{ }^{12}$
*Where determined by engineering decision prior to June 22, 1998, due to physical restrictions on spiral length and operating practices and experience, the variation in crosslevel on spirals per 31 feet may not be more than
${ }^{1}$ Except as limited by § 213.57(a), where the elevation at any point in a curve equals or exceeds 6 inches, the difference in crosslevel within 62 feet between that point and a point with greater elevation may not be more than $11 / 2$ inches.
${ }^{2}$ However, to control harmonics on Class 2 through 5 jointed track with staggered joints, the crosslevel differences shall not exceed $11 / 4$ inches in all of six consecutive pairs of joints, as created by seven low joints. Track with joints staggered less than 10 feet apart shall not be considered as having staggered joints. Joints within the seven low joints outside of the regular joint spacing shall not be considered as joints for purposes of this footnote.

PRINCIPLES CDURSE * MAY 1, 2ロ1日

Frost Heaves causing a raise in the track due to track degradation

PRINCIPLES CIURSE • MAY 1, 2ロ1日

Rate of Runoff over 31 feet

WRI 2018

YOU NEED A 4 1/2" RUNOFF FROM A RAISE

Multiple Defects in Succession

§ 213.1 Scope of part.

(a) This part prescribes minimum safety requirements for railroad track that is part of the general railroad system of transportation. The requirements prescribed in this part apply to specific track conditions existing in isolation. Therefore, a combination of track conditions, none of which individually amounts to a deviation from the requirements in this part, may require remedial action to provide for safe operations over that track. This part does not restrict a railroad from adopting and enforcing additional or more stringent requirements not inconsistent with this part.

PRINCIPLES CDURSE • MAY 1, 2ロ1日

Track Geometry Recording Cars TGC

PRINCIPLES CDURSE • MAY 1, 2ロ1日

WRI 2018

