Long Train Coupler Forces

Walter Rosenberger Research & Tests Norfolk Southern

HEAVY HAUL SEMINAR * MAY 2-3, 2018

Presentation Outline

- 100+ car coil steel trains
 - 80-car practical limit
 - Alternative powering possibilities
- Mixed train Multilevels and Doublestacks
 - The speed wave, and
 - How to minimize it

Coil Steel Train 60W

- Conventional Consist: three (3) head-end units
- 100 loads; 0 mtys; 12-13,000 tons; 5500-5700 ft
- Undulating grade in east central Ohio (Alliance)
- Frequent broken knuckles near the rear of the train
- Limit train to 80 cars → no knuckles
- Why? Is there a better solution?

Consist: EOCC-equipped trough cars

263k, 58'8"

Three head-end units

• 103 lds, 0 mtys, 12500 tons, 5500 ft

286k, 48'8"

15" EOCC units

100 cars yields 250-275 ft of slack (>5 carlengths)

TOES simulation: 103-car train

- X axis head-end mile post
- Y axis position in train (left) and coupler force (color)

To read graph: Select head-end mile post, then read vertically to determine coupler forces throughout train at that location.

TOES simulation: 103-car train

WRI 2018

TOES simulation: 103-car train

We found peak draft forces occurred suddenly at the rear of the train: "Cracking the whip."

103-car train

TOES simulation: 80-car train

Three moderate, but abrupt, run-out events

Throttle handling similar to 100-car case

80-car train

WRI 2018

TOES simulation: DP synchronous mode

104 loads,13180 tons, 5700 ft

Note smooth transition from light buff to light draft

Same throttle handling as conventional case

60W Conclusions

- We verified the draft forces breaking the knuckles.
- We verified 80-car trains avoid getting knuckles.
- We showed that we could use DP to manage coupler forces, and still run full-sized trains.

23G Derailment at Coster

HEAVY HAUL SEMINAR * MAY 2-3, 2018

23G Derailment at Coster

- 2x1 mid-train DP
- 68 lds, 0 mtys, 9752 tons, 9211 ft
- 42 multilevels leading 26 doublestacks
- Undulating grade in east Tennessee
- Gage ruptured under last M/L and first D/S

23G Coster Derailment

23G Coster Derailment

Metaphorically speaking...

P-7653: Coster TN - 23G Derailment

HEAVY HAUL SEMINAR . MAY 2-3, 2018

TOES simulation actual conditions

- 2x1 mid-train DP synchronous mode
- Head end decelerated 3 mph, DP accelerated 1 mph until run-in occurred

HEAVY HAUL SEMINAR . MAY 2-3,

Actual conditions

Actual consist, fenced DP

Improved train makeup

Synchronous mode

Train handling similar to original case

23G Conclusions

- Significant velocity differentials can exist in large blocks of EOCC cars.
- Very large coupler forces can arise at the coupling between EOCC and conventional cars.
- DP can help, but only so much.
- Address the root problem: EOCC block position.

Conclusions

- Buff forces are more likely to result in track damage and derailment than draft forces.
- Large coupler forces tend to result from type of equipment (EOCC blocks) and tonnage (not necessarily length).

Questions, Comments, Discussion

