Overview: Part li

e Friction, Forces and Wear

e Shakedown and Rolling Contact Fatigue (RCF)
 Curving Noise

e Corrugations
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Friction, Forces and Wear
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Recall: Rolling vs. Sliding Friction
They are not the same!

W: coefficient of (sliding) friction

N —V

(normal load) (sliding velocity)

L

f (friction force)
= simply uN

creep:
Rw-V

w (rotational
speed)

R (radius)

. N

(normal load)

\'
)

(forward velocity)

f (friction force)
= f(creep) # simply uN

friction force shown as
acting on block for
positive sliding velocity

friction force shown as
acting on wheel for
positive creep
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Traction/Creepage Curves

. The 1% boundary between “saturated” (pure sliding) and “unsaturated” (combined
rolling-sliding) creepages is approximate and applies only to “well cleaned” and
uncontaminated steel surfaces. As the surfaces become contaminated the traction
curve “saturates” at higher creepage (see Figure 7). For contaminated wheel/rail
interface the saturation is typically reached between 2.5% to 6%.
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Important Concept:

e Sometimes, forces give rise to creepage (e.g. traction,
braking)

e Other times, creepage gives rise to forces (e.g. curving)
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Third Body at Wheel/Rail Contact

 Third Body is made up of iron oxides, sands, wet paste, leaves etc....

 Third Body separates wheel and rail surface, accommodates velocity
differences and determines wheel/rail friction.

* Wheel/Rail friction depends on the shear properties / composition of the
third body layer.
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Third Body Layer — Micron Scale

Traffic

direction

thickness of 3™
body=15 um

1* body : rail

Rolling direction
Wheel

Y.Berthier, S. Decartes, M.Busquet et al. (2004). The Role and Effects of the third body in the
wheel rail interaction. Fatigue Fract. Eng. Mater Struct. 27, 423-436
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Curving Forces (101)

Direction of Travel ) i
Direction of Travel

,,,,,, " AOA//

»»»»»»

Flange Force

AAAA

Track Spreading
Forces

— N 7Y

SARBALSA Friction Forces
Longifudinal (Lateral Creepage
e o_..;"-':.:": from AOA)

Anti-Steering Moment
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mismatched rolling radii)




Impacts of High Lateral Loads:
Rail Rollover / Track Spread Derailments
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Impacts of High Lateral Loads:
Plate Cutting, Gauge Widening
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Impacts of High Lateral Loads:
Wheel Climb Derailments

Lateral/Vertical Force

Flange Angle (Degrees)
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Impacts of High Lateral Loads: Fastener Fatigue / Clip Breakage
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Curving Forces (201)

e Remember this?

How often to we
see a single
(isolated) wheel
set in operation?

Hopefully not very
often!
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Factors Affecting Curving Forces

* Creepage and friction at the gage face / wheel flange
interface (e.g. GF Lubrication -> increased L/V)

e Speed (relative to superelevation)
and centrifugal forces

* Coupler Forces I
OVERBALANCE EQUILIBRIUM UNDERBALANCE
. ff & c” Cf\kntrifugal — '"C\§ntrifugal ( sl 'C;.\ntrifugal
Bu Drag Forces siarof, Forcs Genterof | £orce Gnterof Force
Gravity G‘\'awty \ avity ‘.1
\ \ '
. . . an)
e Vehicle / Track Dynamics:
_ H u nt| ng Superelevation Superelevation Superelevation
f .3
— Bounce Vs ™ > T Amount of
0.0007D Underbalance
— Pitch ,Em\ Maximum ulluf\"ablc‘ opcmlin‘g spcgd Fmph).
E, = Average elevation of the outside rail (inches).
_ RO” D = Degree of curvature (degrees).
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Lateral Force (kips)
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An example...

 Why are the lateral forces measured a few
cribs apart so different?

Lateral Forces - N353.6, Crib 5 (Main 1) Lateral Forces - N353.6, Crib 6 (Main 1)
Lead Axles, Heavy Axle Loads Lead Axles, Heavy Axle Loads
18
Average Reduction: -15% -20% -29% i Average Reduction: nil -34% -38%
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Re-Baseline 0.35 L/1000 0.5 L/1000 0.7 L1000 Re-Baseline 0.35 L/1000 0.5 L/1000 0.7 L/1000
Test Condition Test Condition
O Low Rail MHigh Rail O Low Rail BHigh Rail
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Mystery solved...
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Rail Wear

« Wear Types:
— Adhesion
[— Surface FatigueJ
— Abrasion
— Corrosion

— Rolling Contact Fatigue
— Plastic Flow I

Measurement

Reference

C proportional to COF
 “Archard” Wear Law:

— V = volume of wear

— N = normal load

— | = sliding distance (i.e. creepage)
— H = hardness

— ¢ = wear coefficient
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Wear Rate (mg/m)
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Shakedown and Rolling Contact Fatigue
(RCF)
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RCF Development:
Contact Pressures, Tractions and Stresses

e Cylindrical contact pressure / stress e Cylindrical pressure / stress
distribution with no tangential distribution with tangential traction
traction

Traction coefficient, f =
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RCF Development: Shakedown

p0/ke plastic
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Direction of longitudinal
creep forces applie
rail by wheels

Flakes/Cracks

High Rail

Wheel Tread
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Hydropressurization: effect of liquids on crack growth

a) b)

Figure 8: Influence of grease and water on crack propagation through a) control of crack-
face friction, and b) hydraulic pressurization of the crack tip.
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Wear and RCF
wheel/rail rig test results

R350HT

Dry tests crack results
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Curving Noise
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Spectral range for different noise types

Noise type Frequency range, Hz
Rolling 30 -2500
Rumble (including corrugations) 200 - 1000
Flat spots 50 -250 (speed dependant)
Ground Borne Vibrations 30 - 200
Top of rail squeal 1000 - 5000
Flanging noise 5000 - 10000
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Top of rail wheel squeal noise
. High pitched, tonal squeal (predominantly 1000 — 5000 Hz)

. Prevalent noise mechanism in “problem” curves, usually < 300m
radius

. Related to both negative friction characteristics of Third Body at
tread / top of rail interface and absolute friction level

» Stick-slip oscillations

Flanging noise
. Typically a “buzzing” OR “hissing” sound, characterized by
broadband high frequency components (>5000 Hz)

. Affected by:
« Lateral forces: related to friction on the top of the low rail

« Flanging forces: related to friction on top of low and high rails
 Friction at the flange / gauge face interface
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Absolute Friction Levels and Positive/Negative Friction

Negati/ve friction

0.50

lDry Contact

0.40 @ Friction Modifier

0.30 4/_\ |

‘q’/\

o Stick-slip limit cycle
>
0.20
)
Positive friction
0.00 : ‘ : ‘ ‘ ‘ Creepage / friction force

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Creep Rate (%)

* Replotted from: “Matsumoto a, Sato Y, Ono H, Wang Y, Yamamoto Y, Tanimoto M & Oka Y, Creep force
characteristics between rail and wheel on scaled model, Wear, Vol 253, Issues 1-2, July 2002, pp 199-203.
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Sound spectral distribution for different wheel / rail systems
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Effect of friction characteristics
on spectral sound distribution: Trams
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Sound Level (dBA
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Corrugations (Short Pitch)

@ PRINCIPLES COURSE » MAY 6, 2014 33 WRI 2014



Corrugation formation: common threads

Damage Wavelength _
— Perturbation ——O~ J Fixing » Corrugations
Mechanism :
+ Mechanism
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Treatments!

Wavelength- Typical
fixing frequency Damage Relevant Demonstrably  Should be
Type mechanism  Where? (Hz) mechanism figures References successful successful
Pinned- Pinned- Straight 400-1200 Wear 2-6 [5-23] Hard rails, Increase pinned-
pinned pinned track, high control pinned frequency
resonance  resonance rail of friction so that corru-
(‘roaring curves gation would
rails’) be <20 mm
wavelength
Rutting Second Lowrailof  250-400  Wear 2,7-11 [5, 6, 24-36] Friction Reduce applied
torsional curves modifier, hard  traction in curv-
resonance rails, reduce ing, improve
of driven cant excess, curving
axles asymmetric behaviour
profiling in of vehicles,
curves dynamic
vibration
absorber
Other P2 P2 Straight track 50-100 Wear 3,6,17,18 [4, 24, 37] Hard rails, Reduce unsprung
resonance  resonance  or high rail highly mass
In curves resilient
trackforms
Heavy haul P2 Straight track 50-100 Plastic flow 10, 12-14 [38-40] Hard rails Reduce cant excess
resonance or curves in troughs when corrugation
is on low rail
Light rail P2 Straight track 50-100 Plastic 15, 16 [41] Increase rail Reduce unsprung
resonance or curves bending strength and mass
El
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Pinned-Pinned corrugation (“roaring rail”)

e At the pinned-pinned resonance, rail vibrates as it
were a beam almost pinned at the ties / sleepers

 Highest frequency corrugation type: 400 — 1200 Hz

e Modulation at sleeper pitch (ca 0.9 m) — support
appears dynamically stiff so vertical dynamic loads

appear greater
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Rutting

eTypically appears on low rail

eFrequency corresponds to second
torsional resonance of driven wheelsets

e\/ery common on metros

eRoll-slip oscillations are central to
mechanism

First axle torsional mode

ety n re
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Questions & Discussion
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