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Concrete Crossties — Overview of Use

« Typical Usage:  Number of concrete ties In
— Freight > Heavy tonnage North America*:
lines, steep grades, and — Freight = 25,000,000

high degrees of curvature

. . — Passenger - 2,000,000
— Passenger - High density _ o
corridors (e.g. Amtrak’s — Transit = Significant
Northeast Corridor [NEC]) quantities (millions)

— Transit applications *Approximate
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Concrete Crosstie and Fastener
Research Levels (and Examples)

Materials Components System
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2012 International Survey Results — Criticality of Problems

Problem (higher ranking is more critical) Average Rank

International Responses

Tamping damage 6.14
Shoulder/fastening system wear or fatigue 5.50
Cracking from center binding 5.36
Cracking from dynamic loads 5.21
Cracking from environmental or chemical degradation 4.67
Derailment damage 4.57
Other (e.g. manufactured defect) 4.09
Deterioration of concrete material beneath the rail 3.15
Deterioration of concrete material beneath the rail 6.43
Shoulder/fastening system wear or fatigue 6.38
Cracking from dynamic loads 4.83
Derailment damage 4.57
Cracking from center binding 4.50
Tamping damage 4.14
Other (e.g. manufactured defect) 3.57

Cracking from environmental or chemical degradation 3.50
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Current Design Process

 Found in AREMA Manual on Railway Engineering
« Based largely on practical experience:

— Lacks complete understanding of failure
mechanisms and their causes

— Empirically derives loading conditions
(or extrapolates existing relationships)

« Can be driven by production and installation practices
« Improvements are difficult to implement without

understanding complex loading environment

- . Insulator
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Principles of Mechanistic Design

1. Quantify track system input loads (wheel loads)

2. Qualitatively establish load path (free body diagrams, basic
modeling, etc.)

3. Quantify demands on each component
a. Laboratory experimentation
b. Field experimentation
c. Analytical modeling

4. Link quantitative data to component geometry and materials
properties (materials decision)

5. Relate loading to failure modes
6. Investigate interdependencies through modeling
7. Establish mechanistic design practices and incorporate into

AREMA Recommended Practices
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Determining System Input Loads

« Quantitative methods of data collection (Step 1):
— Wheel Impact Load Detectors (WILD)
— Instrumented Wheel Sets (IWS)
— Truck Performance Detectors (TPD)
— UIUC Instrumentation Plan (FRA Tie BAA)

* Most methods above are used to monitor rolling stock
performance and assess vehicle health

« Can provide insight into the magnitude and
distribution of loads entering track structure

— Limitations to WILD: tangent track (still need lateral
curve data), good substructure (not necessarily
representative of the broader rail network)
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Vertical Wheel Loads — Shared Infrastructure

100% - N
‘\
90% - v
\
\
80% - \ _ _
\ -==Freight Locomotives
! —Intermodal Freight Cars
8 70% - ‘|‘ Passenger Coaches
8 ' Passenger Locomotives
O 60% - \  — Other Freight Cars
&) ]
L|>J< 50% - Empty [
- ' Cars 2 \NT T — - —- — ‘,
c ]
(4] % - !
S 40% ‘
) Loaded
A 30% -
Cars
20% -
10% -
0% . . .

0 5 10 15 20 25 30 35 40 45 50 55 60

Nominal Vertical Load (kips)
Source: Amtrak — Edgewood, MD (November 2010)



Effect of Traffic Type on Peak Wheel Load
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Dynamic Wheel Load Factors

\ WlFreight Cars
2 5- | MllLocomotives
’ \PassengerCoaches
2.0
o)
©
©
T
& 1.57
E
1.0 - —Talbot/Hay
e Indian Railways
.= - = -Eisenmann
_— = AREMA Chapter 30 = =Birmann
Speed Factor
0.5

0 10 20 30 40 S0 60 70 80 90 100 110 120 130
Source: Amtrak — Edgewood, MD (November 2010) Speed (mph)



More than a Dynamic Factor: Impact Factor
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So What i1s Our Design Threshold?

Threshold #1  Threshold #2

Frequency

Load (e.g. Rail Seat Load)

*Need curves for each component / interface and failure mode
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Development of Quantitative Loading Model

_ Confidence
interval

Peak Vertical Wheel Load

Speed
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Development of Quantitative Loading Model

Conceptual Sketch
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Establishment of the Qualitative Load Path
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Rail Seat Load Calculation Methodologies

Wheel Load (kips)
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. . R
FRA Tie and Fastening SYyStem s oeaimen ormansportion

BAA O bj eCtiveS an d De I ive rab I eS Federal Railroad Administration

FRA Tie and Fastener BAA

« Program Objectives Industry Partners:
— Conduct comprehensive international literature review ""“ BUILDING AMERICA'
and state-of-the-art assessment for design and
performance ﬂ_v__ﬁf |
— Conduct experimental laboratory and field testing, ANMT R A KO
leading to improved recommended practices for design 7/
— Provide mechanistic design recommendations for Amsted

S ——
P

concrete crossties and fastening system design in the

US Amsted Rail

« Program Deliverables ne

— Improved mechanistic design recommendations for @l ||| @
concrete crossties and fastening systems in the US

— Improved safety due to increased strength of critical @ HANSON
infrastructure components LEBFoster

— Centralized knowledge and document depository for T Conerets Ties

: . V 4

concrete crossties and fastening systems I I >>\.
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Quantification of Lateral Loads Entering
the Shoulder Face (Insert)

* Instrumented shoulder face insert
— Original shoulder face is removed
— Small beam insert replaces removed section
— 4-point bending beam experiment
« Beam strategy is a well-established, successful technology
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Transfer of Lateral Load to Shoulder Face
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Percent of Lateral Load Transferred to Shoulder
Preliminary Data
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Full Scale Track Response Experimental System




Full Scale Track Response Experimental System
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Goals of Field Instrumentation

Lay groundwork for mechanistic design of concrete
crossties and elastic fasteners

Quantify the demands placed on each component within
the system

Develop an understanding into field loading conditions
Provide insight for future field testing

Collect data to validate the UIUC concrete crosstie and
fastening system FE model
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Areas of Investigation

Rail
Stresses at rail seat
Strains in the web
Displacements of web/base
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TTCI Field Testlng Locations

y 5 degree curve spiral
= ! Balance Speed 33 mph
Tangent Railroad Test
Speeds up to 105 mph Track (RTT)

Q HEAVY HAUL SEMINAR « MAY B-9, 2013 WR| 2013



Loading Environment

« Track Loading Vehicle (TLV) < Freight Consist

— Static — 6-axle locomotive (393k)
— Dynamic — Instrumented car

 Track modulus — Nine cars
P s + 263, 286, 315 GRL Cars

» Passenger Consist
— 4-axle locomotive (255k)
— Nine coaches
« 87 GRL
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FuIIy Instrumented Rail Seats

w’.’»’*" \f

*Q w-a.n«‘:!?"‘--'

Instrumented
Low Raill
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Instrumented Low Ralil

.
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Field-side Instrumentation

Vertical Tie
Displacement

Vertical Web
Strain

-
ﬂ/
oy | -
B Base Displacement ! \\\.
, =
- \\\ ——— . "q_ _'/
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Gauge-side Instrumentation

Lateral Rail
Displacement
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Data Acquisition System

WRI 2013
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Tangent Track (RTT) — Passenger Train
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Lateral Loads on Tangent Track (Freight)
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Lateral Loads on Tangent Track (Freight)
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RTT Curved Instrumentation — Train Pass
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Lateral Loads Acting on a Curve Track
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Global Track Deflections Under
Passage of Freight Train
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Vertical Displacements of Crossties (HTL)
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Effect of Train Speed on Tie Deflection

Speed (mph)
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Concrete Crosstie and Fastening System

Pad &
Abrasion
frame

Shoulder Concrete Crosstie



Component Modeling: Validation

« Clip Model
= 35,000 -
=
@ 30,000 -
E 25,000 -
E’Z0,000 l
15,000 -
©
A O 10,000 - -=-Clip Model
vg: 75% — -
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SR
- esosetos Mises stress contour Displacement (m)
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Component Modeling: Concrete Crosstie
and Ballast

Static loading of the model

U, Magnitude

+3.777e-02
+3.462e-02
+3.147e-02
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System Model: Multiple-Tie Modeling

« Track loading vehicle (TLV) applying vertical and lateral loads to the track
structure in field

« The symmetric model including 5 crossties

Simplified model: \ e

Fastening system were replaced
by BCs and pressure

—

—

1
iy 2 1 —

——3
- et

1
05 : 2 —

&Sl E v

e : ™ ==

Detailed model with the fastening system




Force (Ib)

System Modeling: Lateral Load Path
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Current Research Thrust Areas

« Continued data analysis to understand the governing mechanics
of the system by investigating the:

— elastic fastener (clamp) strain response

— number of ties effected simultaneously

— bending modes of the crossties

— pressure magnitude and distribution at the rail seat

« Continued comparison and validation of the UIUC tie and
fastening system finite element model (Chen, Shin)

« Preparation for instrumentation trip (May 2013)
— Focus on lateral load path by gathering
* relative lateral tie displacements
 global lateral tie displacements
* load transferred to the clip, insulator-post, and shoulder
Small-scale, evaluative tests on Class | Railroads
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RallTEC Concrete Tie Research Team
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